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Next steps




What CMMAP models will get finished
in the time available?
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GCMs with very flexible resolution
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Models don’t get finished. They just get better.




Unique Elements

Super-parameterization
Geodesic Z grid

Unified System of equations
Vector vorticity model

Q3D super-parameterization

Unified parameterization






The Z-Grid

We use a multigrid method
to solve the 2D Poisson equations.



No computational modes
Excellent dispersion properties
Direct prediction of the vertical component of the vorticity vector



The unified system of equations
Arakawa and Konor (2009)

Yields elastic solutions for large-scale quasi-hydrostatic motion and anelastic
solutions for small-scale nonhydrostatic motion.

Filters vertically propagating acoustic waves.

Does not introduce approximations to the thermodynamic and momentum
equations. The continuity equation uses the quasi-hydrostatic density.

Does not need a basic (or mean) state.
Conserves total energy.

Covers a wide range of horizontal scales from turbulence to planetary scales so
that it is suitable for the use in global cloud resolving models.



3D Poisson Equation for Pressure
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Solver performance is poor with Neumann boundary conditions.
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VVM

h = 0 at the upper boundary.
gt is predicted for the top layer.
Upper boundary condition is w = 0.

Vh is determined from streamfunction and
velocity potential. Mean velocity is predicted.

h is predicted at interior interfaces.
g is diagnosed from g7 and h at layers.
w is solved from a 3D elliptic equation.

Vv, is determined from h and w.

| is predicted at every interface.

h = 0 at the lower boundary (frictionless case).

Lower boundary condition is w = 0.



This is a C grid.
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Geodesic VYVM

Mismatch of degrees of freedom — three horizontal vorticities per
mass point —> computational mode.

Filter computational mode by predicting curl and div of horizontal
vorticity, then recovering horizontal vorticity vector by solving 2D
Poisson equations.

Predict the curl of the horizontal vorticity vector at the cell centers.
Palinstophy.

Predict the vertical component of the vorticity at the cell centers,
displaced vertically by half a level.

Divergence of the horizontal vorticity is minus d/dz of the vertical
component of the vorticity.

Divergence and curl can be used to reconstruct both normal and
tangential components of the horizontal vorticity vector on cell walls.

Strategy:

A Predict curl(eta) and zeta

A Diagnose horizontal vorticity vector

A Compute w and horizontal winds as in original VVM
A 3D Poisson equation is for w, not p



Alex Goodman is working on this
in a limited-area framework.



summary

Unified system entails 3D Poisson equation.

With current version of SUZI, the Poisson equation
governs pressure, with Neumann boundary conditions.

Geodesic VVM motivated by need for Dirichlet boundary
conditions, which are used with solution for w.

Prediction of curl and div of horizontal vorticity vector
motivated by need to avoid computational mode.
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