An update on model development

Ross Heikes, C.S. Konor and D. Randall

Dept. of Atmospheric Science Colorado State University

CMMAP summer meeting August 5, 2014

Outline

- Several unrelated little parts:
- I. New vertical coordinates in the unified model
 - a. height (Lorenz) (NEW numerical tests)
 - b. terrain following (Charney-Phillips)
 - simple sigma (Phillips)
 - hybrid sigma-pressure coordinate (NEW)
 - hybrid sigma-theta coordinate (NEW)
- 2. Axial angular momentum conservation in the icosahedral model
- 3. 5th-order advection
- 4. More accurate winds

Height coordinate. Hydrostatic. Potential temperature perturbation.

Height coordinate. Nonhydrostatic. Potential temperature perturbation.

Height coordinate. Nonhydrostatic. Bubble.

beta = 30.0_8 pC = 30000.0_8 pS0 = 120000.0_8 pT = 100.0 8

Hybrid sigma-pressure coordinate. Big mountain test. Surface potential temperature.

Hybrid sigma-pressure coordinate. Big mountain test. Surface relative vorticity.

Hybrid sigma-theta coordinate.

- Distribution of coordinate surfaces within Jablonowski-Williamson test case.
 - I. alpha = I. Less isentropic
 - 2. alpha = 8. More isentropic

Hybrid sigma-theta coordinate. Jablonowski-Williamson. Day 10. Grid 6 and 7. α =1 and α =8.

• Inspired by a paper in JAMES:

Held-Suarez simulations with the Community Atmosphere Model Spectral Element (CAM-SE) dynamical core: A global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates

Peter H. Lauritzen¹, Julio T. Bacmeister¹, Thomas Dubos², Se bastien Lebonnois³,⁴, and Mark A. Taylor⁵

- The global axial angular momentum (AAM) can be separated into two parts:
 - I. A part associated with the relative motion of the atmosphere with respect to the planet's surface. (wind AAM)
 - 2. A part associated with the angular velocity of the planet. (mass AAM)

$$M = M_r + M_{\Omega} = \int_D \rho u r \cos \varphi \, dV + \int_D \rho \Omega r^2 \cos^2 \varphi \, dV$$

Axial angular momentum conservation in the icosahedral model

5th-order advection

 In 5th-order advection the flux across a wall is determined by 3 points upstream and 2 points downstream

2nd-order. Williamson Test Case 2. Day 12.

maximum error is 56m

3rd-order. Williamson Test Case 2. Day 12.

maximum error is 7m

min=-0.436593e+01 ave= 0.829069e+01 max= 0.997615e+03

5th-order. Williamson Test Case 2. Day 12.

maximum error is 2m

Wind at edges as a function of stream function and velocity potential

Helmholtz decomposition

 $\mathbf{v} = \mathbf{k} \times \nabla \psi + \nabla \chi = \mathbf{v}_{\psi} + \mathbf{v}_{\chi}$

- Interpolate $\psi_{i+1/2}$ and $\chi_{i+1/2}$ to cell corners from surrounding cell centers
- Vector wind at edges as a function of stream function and velocity potential

$$\left(\mathbf{v}_{\psi}\right)_{i} = \frac{\psi_{i+1/2} - \psi_{i-1/2}}{l} \mathbf{n} + \frac{\psi_{i} - \psi_{0}}{L} \mathbf{\tau}$$
$$\left(\mathbf{v}_{\chi}\right)_{i} = \frac{\chi_{i} - \chi_{0}}{L} \mathbf{n} + \frac{\chi_{i+1/2} - \chi_{i-1/2}}{l} \mathbf{\tau}$$

where l is the length of a cell wall and L is the distance between cell centers.

Perfect Hexagon Stencil 2 -- 3rd-order accurate

- The Laplacian can be written 8 $\nabla^2 f \approx \sum^{n} c_n f(x_n, y_n)$ q 3 2 7 where the weights are given by 0 $\left\{\left\{c00 \rightarrow -\frac{16}{3 \wedge 2}, \ c01 \rightarrow \frac{1}{\wedge 2}, \ c02 \rightarrow \frac{1}{\wedge 2}, \ c03 \rightarrow \frac{1}{\wedge 2}, \ c04 \rightarrow \frac{1}{\wedge 2}, \right\}$ 4 1 $c05 \rightarrow \frac{1}{\Lambda^2}$, $c06 \rightarrow \frac{1}{\Lambda^2}$, $c07 \rightarrow -\frac{1}{0 \Lambda^2}$, $c08 \rightarrow -\frac{1}{0 \Lambda^2}$, • 5 10 6 12 $c09 \rightarrow -\frac{1}{0 \wedge 2}$, $c10 \rightarrow -\frac{1}{0 \wedge 2}$, $c11 \rightarrow -\frac{1}{0 \wedge 2}$, $c12 \rightarrow -\frac{1}{0 \wedge 2}$ 11
- The Taylor series becomes (f^(0,4) is the lowest derivative)

$$f^{(0,2)}[0,0] - \frac{1}{160} \Delta^{4} f^{(0,6)}[0,0] - \frac{3 \Delta^{6} f^{(0,8)}[0,0]}{7168} + f^{(2,0)}[0,0] - \frac{1}{32} \Delta^{4} f^{(4,2)}[0,0] - \frac{1}{32} \Delta^{4} f^{(4,2)}[0,0] - \frac{1}{512} \Delta^{6} f^{(4,4)}[0,0] - \frac{\Delta^{8} f^{(4,6)}[0,0]}{20480} - \frac{3 \Delta^{10} f^{(4,8)}[0,0]}{4587520} - \frac{1}{240} \Delta^{4} f^{(6,0)}[0,0] - \frac{1}{384} \Delta^{6} f^{(6,2)}[0,0] - \frac{\Delta^{8} f^{(6,4)}[0,0]}{6144} - \frac{\Delta^{10} f^{(6,6)}[0,0]}{245760} - \frac{\Delta^{12} f^{(6,8)}[0,0]}{18350080} - \frac{5 \Delta^{6} f^{(8,0)}[0,0]}{21504} - \frac{13 \Delta^{10} f^{(8,4)}[0,0]}{1966080} - \frac{13 \Delta^{12} f^{(8,6)}[0,0]}{78643200} - \frac{13 \Delta^{14} f^{(8,8)}[0,0]}{5872025600} - \frac{13 \Delta^{14} f^{(8,8)}[0,0]}{5872025600} - \frac{13 \Delta^{14} f^{(8,8)}[0,0]}{5872025600} - \frac{13 \Delta^{14} f^{(8,8)}[0,0]}{5872025600} - \frac{1}{10} + \frac{$$

Series expansion approach to approximate the tangential derivate

• Many stencils are possible

surface theta

- Average from day 1500 to day 2000 every 10 days
- 20 snapshots from day 1810 to day 2000 every 10 days

surface pressure

- Average from day 1500 to day 2000 every 10 days
- 20 snapshots from day 1810 to day 2000 every 10 days

relative vorticity

- Average from day 1500 to day 2000 every 10 days
- 20 snapshots from day 1810 to day 2000 every 10 days

height at about 500hPA

- Average from day 1500 to day 2000 every 10 days
- 20 snapshots from day 1810 to day 2000 every 10 days

