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RMNP—a pristine environment receiving pollution
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Loch Vale Watershed

Rocky Mountain National Park, Colorado
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Livestock is an important source of NH,

 aaa
A ,” "
¥ !
- . (R ¥ %
RYpsilon LSS

Mountam 3

)

Twin Sisters

) P\I-\ul

\ | ' R < :
’ 3
[,mhnrrpl

[




Concentrated Animal
Feeding Operation (CAFO) Facts

* CAFOs = 0.5 Gt manure per year
1 head of cattle : 5 Colorado residents

* Cattle on feedlots in Weld County,
Colorado produce as much manure as
the sewage from New York City and
Chicago combined.




Front Rap

We got a trough from the west,
They callin” for baroclinicity,
Don’t know what that is?

It’s part of vorticity.

Don’t have to ask,

Just walk outside,

Make sure you layered,
And don’t you dare drive.

The roads will be covered,
With snow and ice,

Just wait a few days,

And it will be nice.

But if there’s a chance,
Of a wind from the easties,

Plug up your nose,
You're smellin’ cow feces

| digress...

Meteorologists will be smiling,
As mother nature delivered,
What the east don’t know,
Models say a blizzard.




Outline

e Background
— Deposition pathways
— Mountain-valley circulation
* Convective transport case study
— National Atmospheric Deposition Program
— North American Regional Reanalysis
— Weather Research & Forecasting Model

* Probabilistic prediction tool




Many N reservoirs = Atmosphere is a
key transport mechanism
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Atmospheric Processing of NH,

Reaction acid
gases & aerosols
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Effects of N deposition in the Rockies

Increasing Effects

Changes in Change in Surfoce water  Changes

soil and water  aquatic plant nitrogen in free
chemistry species saturation chemistry
. composition >

“Weight of evidence” of ecosystem health decline
on east side of park

Increasing Nitrogen Deposition

Figure source: National Park Service




We analyzed wet depo\smon of morganlc N at 3 sites
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Wind climatology in Greeley, CO
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Mountain-Valley Circulation

N

warm cold







National Atmospheric
Deposition Program National Trends Network

Provides a long-term record of precipitation chemistry
at over 300 rural sites across the U.S.

Weekly samples of constltuents in wet deposmon
Samples sent to Central ' ;
Analytical Lab at the IL

State Water Survey
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National Atmospheric Deposition Program (NRSP-3) (2007); Peden (1986)




Beaver Meadows
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Monthly averages (1994-2013)

of N deposition and precipitation

Beaver Meadows (2477 m) Loch Vale (3159 m) Niwot Ridge (3520 m)
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Beaver Meadows: histograms of weekly deposition

Weekly Winter (DJF) Wet Deposition of

Weekly Fall (SON) Wet Deposition of
Inorganic Nitrogen (1994-2013, n = 160)

Inorganic Nitrogen (1994-2013, n = 173)

Very few high-
deposition
weeks in fall

Very few high-
deposition
weeks in fall

and winter (fall and winter
max of ~23
mg/(m? wk)
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North American
Regional Reanalysis

* Meteorological data from 1979 — present
 Data every 3 hours
* 32-km/45 vertical layers

We used NARR to analyze synoptic circulation
pattern of the 18-20 August 2006 case study

Mesinger and Coauthors (2006)
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Weather Research and
Forecasting Model (WRF)

Initialized with GFS
FNL Analysis (19)

4 domains (27 km, 9 km,
3 km, 1 km); 50 vertical
levels

Output variables every
10 min for 48 hours

Included passive tracer

We used WRF to simulate cloud-scale convection




WRF captured expected diurnal cycle of winds

—Niwot Ridge (3520 m)
——Loch Vale (3159 m)
——Beaver Meadows (2477 m)

Downslope

u(m/s)

Upslope

Hours since 12 A.M. August 18, 2006




WRF output
12:40 MDT August 19, 2006

Longitude

log(Tracer Concentration)
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-3 -275 -25 -2256 -2 -175 -15 -125 -1
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WRF output
13:00 MDT August 19, 2006

Longitude

log(Tracer Concentration)

T [0 T T
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WRF output
13:10 MDT August 19, 2006

Longitude

log(Tracer Concentration)

T T T T [ .

-3 -275 -25 -2256 -2 -175 -15 -125 -1




WRF output
13:20 MDT August 19, 2006
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WRF output
13:30 MDT August 19, 2006
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WRF output
13:40 MDT August 19, 2006
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WRF output
13:50 MDT August 19, 2006
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WRF output
14:00 MDT August 19, 2006
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WRF output
14:10 MDT August 19, 2006
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WRF output
14:20 MDT August 19, 2006
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WRF output
14:30 MDT August 19, 2006
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WRF output
14:40 MDT August 19, 2006

Longitude

log(Tracer Concentration)

T [0 T T

-3 -275 -25 -2256 -2 -175 -15 -125 -1




WRF output
14:50 MDT August 19, 2006
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WRF output
15:00 MDT August 19, 2006
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WRF output
15:10 MDT August 19, 2006
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WRF output
15:20 MDT August 19, 2006
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WRF output
15:30 MDT August 19, 2006
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WRF output
15:40 MDT August 19, 2006
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-3 -275 -25 -2256 -2 -175 -15 -125 -1




WRF output
15:50 MDT August 19, 2006
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-3 -275 -25 -2256 -2 -175 -15 -125 -1




WRF output
16:00 MDT August 19, 2006
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3D field of WRF output

Summary until now:

- Spring and summer have
the most wet deposition
events
High wet deposition is
caused mostly by moist,
upward transport

Next steps:

- Work towards a
probabilistic prediction
tool for future deposition
events
Connect transport, precip,
and deposition

8-18-06 6 A.M. MDT




Probabilistic prediction tool for
nitrogen deposition in RMNP




Precip vs. deposition at Beaver Meadows

Beaver Meadows 1980-2013 (weekly)
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A general relationship exists between them, but it’s certainly not a perfect correlation




Simple attempts at a “metric” that is associated
with high deposition events

* High-deposition weeks tend to have strong easterly upslope flow
with lots of moisture, generally after the passage of a cold front

As a very simple test, let’s look at a metric that combines
precipitable water (i.e., column-integrated water vapor) and
easterly low-level winds, with both normalized by “high” values:

Where values of this quantity are large in magnitude and negative,
there is strong upslope flow and ample moisture, which should
account for both transport of emissions and likelihood of
precipitation




How well does this predictor do generally?

In terms of predicting precipitation along the northern Front Range,
it appears to do ok, but could be better

Precip {(mm)

—_
]
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L
Q

2

o

“Norm. PW times U’ Norm. PW times U

2009: not much correlation, though
negative “Q” and precip; there were only a few periods with
there were several high-deposition high Q and no major rain events (or
events that matched up well, though deposition events)

also a few false alarms

2004: strong correlation between




How often do we see these conditions?

12 out last 20 years had trends up to the left
On average, there are ~15 three-hour periods each summer with
Q < -1 over northern CO, many of them consecutive

This suggests that the “early warnings” would not need to be
issued on that many days, but thresholds for these warnings still

need to be determined

Precip (mm)
Precip (mm)

-1 -0.5 o 0.5 1 1.5 a 2.5 3 35 4
Norm. PW times U

-0.5 0. 1.
Norm. PW times U




Density Estimation

istogram is the most widely known form of
ensity estimation

istograms are biased by starting point and
in width

Anchor point: < Anchor point:
(-1.5, -1.5) - ! "

,, (-1.625, -1.625)
Binwidth: 0.25 Binwidth: 0.25

http://en.wikipedia.org/wiki/Multivariate_kernel_density estimation




Kernel Density Estimation

* Finite sample - PDF everywhere, including
where no data are observed

* Each point is smoothed into a space
surrounding it

Probability mass:
Red = 25%
Red+Orange = 50%
R+0+Y=75%

http://en.wikipedia.org/wiki/Multivariate_kernel_density estimation




Back to WRF

* WRF-ARWv3.3.1
e Operational: 0z run every day
* 5runs with 12-km grid

spacing

WRF physics options

WRF Domains

TnitiaI/Boundary
conditions

Member 1
0.5 degree GFS, BCs
updated every 3 hours

Member 2
0.5 degree GFS, BCs
updated every 3 hours

Member 3
40-km NAM, BCs updated

every 3 hours

Member 4
40-km NAM, BCs updated
every 3 hours

Member 5
ICs come from a cycled WRF/WRF-VAR
forecast and assimilation system, BCs come

from the 6-hours earlier 0.5-degree
GFS forecast

Cumulus

Kain-Fritsch

Grell-Devenyi 3 (G3)

Betts-Miller-Janijic

Kain-Fritsch

G3

Boundary layer

MYJ

YSU

MYJ

MYJ

'YSU

Microphysics

WSM 6-class

Thompson

Goddard

Thompson

Goddard

Land surface

Noah

Noah

Noah

Noah

Noah

Shortwave radiation

Dudhia

Dudhia

Goddard

Dudhia

Goddard

Longwave radiation

RRTM

RRTM

RRTM

RRTM

RRTM




WRF trajectories

e 32 grid points per run released every 3
hours from FCL, GXY, FMM, and LIC
Saved endpoints from 6-hour forward
trajectories




Applying KDE to trajectory endpoints

Monday, 04 Aug 2014 9 AM local time

Trajectory endpoints released from gxy Trajectory endpoints released from gxy
20140803, t=39 h 20140804, t=15h

o©
o
IN]

Trajectory endpoint density
Trajectory endpoint density

Total endpoints: 128 Total endpoints: 128

Limitation! Will need to verify collocated precipitation




Next steps

Collocation with rain
Concentration vs precipitation
Setting a threshold for KDE

Forecast skill
— NADP reports

— Complexity added with ranchers changing
management




Summary

Seasonality in precipitation and deposition (NADP)

Cloud-scale convection is just as important as
mesoscale mountain-valley circulation

Probability prediction tool is operational but we
still have some tuning to do
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Questions?

Beef Cattle
2007 Census

Density Level

2175-7299

Moderate <2175
None

Figure from http://www.factoryfarmmap.org @ Meat Piants




Future Work — STILT

® backward
m forward

Lin et al. (2003)



Mt. Elbert
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Effects of Nitrogen-loading

(4) Decomposition further
depletes oxygen:
algae and deeper water
plants die and bacteria
(decomposers) increase,
further choking the
oxygen level,

@ Nutrient load up: excessive nutrients are
flushed into a lake or a pond from
stormwater runoff of fertilizers,
leaves and waterfow! excrement.

(3@ Algal blooms and oxygen depletion:

(@ Plants flourish: these pollutants fuel aquatic plant

growth causing a flourishing of algae, duckweed,
cattails and other plant organisms.




Recently in the news...

Gulf Coast

Louisiana

Bottom Oxygen
(mgiL)

>5

Bathymetry (m)

-5
-4
-3




Recently in the news...

Forget the lottery, invest in climate
change solutions

Y CcnNBC
Published: Thursday, 5 Sep 2013 | 3:58 PM ET

By: Terry Tamminen | President, Seventh Generation Advisors

Each hog produces about , and all
that waste could be converted to electricity and diesel fuel using modern
gasification technology. Imagine the economic benefits versus oil—which hit record
highs again last week—and the far-lower carbon footprint of that feedstock for

producing domestic, renewable energy.
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Cows Emissions =2 Energy

Pumpable Solid
Concentration
Range for Wet
Gasification

Heating value of
brown coal as

received A

"
. L]

10% 20%

Solid Concentration

—8-— Swine Manure
=t Dairy Manure

Unpaved Feedlot Manure
~¢—Poultry Litter
e Municipal Solid Wastes
- Paved Feedlot Manure
- Raw Sludge




Feedlot Cow Emissions =2 Energy

Feedlot cows:
* Produce 12 tons of manure per year per 1000 |bs

* Live 2 years

* Are slaughtered at 1000 lbs
Manure and energy

e ~14 MJ/kg (from previous plot)

So how much energy?




Solving the Problem

Manure , Life . Energy per | Weight
per year expectancy unit weight conversion

12tons  « 5 years * 14 MJ « 907.18 kg
1 year 1 kg 1 ton

= 304.8 GJ

6.1 GJ = potential chemical energy stored in 1 barrels of oil

. . 1 cow = 50 barrels of oil!!!




