Pyruvic acid photolysis: Characterization of the secondary organic aerosol formed Rachel Severson¹, Shunsuke Nakao², Sonia Kreidenweis² ¹Department of Environmental Science, Colorado College; ²Department of Atmospheric Science, Colorado State University

Research Question

What is the role of aqueous-phase chemistry in aerosol-cloud interactions?

Background

COLORADO

COLLEGE

- Volatile organic compounds (VOCs) react in the atmosphere to produce secondary organic aerosol (SOA)
- current understanding of the atmosphere
- Pyruvic acid is ubiquitous in the atmosphere and currently used in climate models as a proxy for similar molecules
- Aqueous-phase pyruvic acid was photolyzed and aerosolized to characterize the formed SOA (Part I: Aerosol formation)
- We examined the resulting change in aerosol mass and change in the formed aerosol's ability to act as cloud condensation nuclei (CCN) (Part II: Impact)

Adapted from Reed Harris et al., 2014

0.1M Pyruvic acid was photolyzed in a glass photoreactor for 6 hours. condensation nuclei counter (CCNC) and condensation particle counter (CPC) to determine k, and scanning mobility particle sizer (SMPS) to determine aerosol yield.

*Aerosol yield = -

A better understanding of aqueous-phase SOA formation and evolution is needed to improve climate models and our

Köhler theory describes aerosol's hygroscopic growth

к is a parameterization of hygroscopicity. We expect к

Petters and Kreidenweis, 2007

volume of aerosol volume of initial PA

Results

Summary

• Unreacted room temperature pyruvic acid was atomized to yield $\sim 4\%$ aerosol and a κ value of 0.22 Photolysis in the 15 and 21°C condition resulted in an increase in aerosol yield from ~ 4% to ~ 15% • In the three conditions investigated, κ decreased from ~ 0.2 to ~ 0.1 • In the pH 7 condition, aerosol yield increased from ~ 6% to only 10% • At pH > 2.18 (pyruvic acid's p K_a), the concentration of the less photolyzable pyruvate anion increases, and the rate of photolysis decreases

References and Acknowledgements

Petters, M. D., and S. M. Kreidenweis. "A single parameter representation of hygroscopic growth and cloud condensation nucleus activity." Atmospheric Chemistry and Physics 7.8 (2007): 1961-1971.

Reed Harris, Allison Early, et al. "Photochemical Kinetics of Pyruvic Acid in Aqueous Solution." The Journal of Physical Chemistry A (2014). This work has been supported by the National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes,

managed by Colorado State University under cooperative agreement No. ATM-0425247.

