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Boundary layer clouds In
cloud-system-resolving models (CSRMs)




One approach for better representing SGS

clouds and turbulence is the Assumed PDF
Method.

This method parameterizes SGS clouds and
turbulence in a unified way.

It was initially developed for boundary layer
clouds and turbulence.

It is a very promising method for use in
coarse-grid CRMs.



Steps in the Assumed PDF Method

The Assumed PDF Method contains 3 main steps that
must be carried out for each grid box and time step:

(1) Prognose means and various higher-order moments.

(2) Use these moments to select a particular PDF
member from the assumed functional form.

(3) Use the selected PDF to compute many higher-order
terms that need to be closed, e.g. buoyancy flux, cloud
fraction, etc.



Our PDF includes several variables

We use a three-dimensional PDF of vertical velocity,
w , total water (vapor + liquid) mixing ratio, ¢, and
liquid water potential temperature, Ql ;

P = P(w,q0;)

This allows us to couple subgrid interactions of
vertical motions and buoyancy.

Randall et al. (1992)



SHOC (Simplified Higher-Order Closure)
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® Typically requires the addition of several prognostic
equations into model code (Golaz et al. 2002, Cheng and Xu
2006, 2008) to estimate the turbulence moments required to
specify the PDF.

® Our approach is called Simplified Higher-Order Closure
(SHOC) (Bogenschutz and Krueger 201 3):

® Second-order moments diagnosed using simple

formulations based on Redelsperger and Sommeria (1986)
and Bechtold et al. (1995)

® Third-order moment diagnosed using algebraic expression
of Canuto et al. (2001)

® All diagnostic expressions for the moments are a function
of prognostic SGS TKE.

Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-
scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195-211



We implemented SHOC in SAM (System for
Atmospheric Modeling), a 3D CRM developed by
Marat Khairoutdinov.

Khairoutdinov, M. F, and D.A. Randall, 2003: Cloud-resolving

modeling of the ARM summer 1997 IOP: Model formulation,
results, uncertainties and sensitivities. J. Atmos. Sci., 60, 607-625.




Summary

® SHOC includes these desirable features:

® A diagnostic higher-order closure with assumed double
Gaussian joint PDF,

® A turbulence length scale that depends on SGS TKE and
large-eddy length scales.

® |t can realistically represent many boundary layer cloud
regimes in models with dx ~ 0.5 km or larger, with virtually
no dependence on horizontal grid size.

® |tis economical, with potential for easy portability to other
explicit-convection models.



CONSTRAIN: A cold-air outbreak case

This cold air outbreak case is based on
observations taken during the U. K. Met Office
CONSTRAIN campaign over the North Atlantic
on January 31, 2010 and associated NWP
simulations.

As cold air advects over warmer seas,
stratocumulus changes to mixed-phase
cumulus over a 14-hour period.

(http://appconv.metoffice.com/
cold_air_outbreak/constrain_case/home.html)



SHOC Perfomance
® Various horizontal grid sizes: 0.5, |, 3,8 km
® Vertical grid size = 100 m
® Domain size = 96 km x 96 km

® |ES benchmarks: horizontal grid size = 100 m,
vertical grid size = 50 m, domain size = 32 km
x 32 km or larger.

Case Microphysics | Radiation | Cloud |Precip. b\'g,:'e(: lce |lce Sed.
Full Physics
M2005
No Ice

No Sed




GCSS Inversion Height (km) (M2005 Runs)

Inversion Height

M2005 SHOCGC, no ice

e
)

SAM-TKE 3km = SHOC 8km
SHOC 3km
SAM-SHOC 3km 3l SHOG 1km |
= LES .1km = SHOC .5km
I 1 — | ES .1km

g
)

-
a

-
T
|

GCSS Inversion Height (km) (No Ice)
N

1o 10 15 0'50 ‘ 1‘0 15
Time (hours) Time (hours)
SHOC no sed. NOSHOC no |ce

3 3.5
SHOC 3km NOSHOC 3km
SHOC 1km NOSHOC 1km

—— SHOC .5km 3|| —— NOSHOC .5km 1

LES .1km | = LES .1km

N
)

iy
a

GCSS Inversion Height (km) (No Sed.)

10 15

1 1 1
0 5 10 15
Time (hours)

GCSS Inversion Height (km) (No Ice)
o
)} N

o
a

Time (hours)



+ WP

M2005

SHOC, no ice

CWP + IWP (g m™2) (M2005 Runs)

CWP + IWP (g m™2) (No Sed.)

: 600
—— SAM-SHOC 3km | s00|| — SHOC 3km |
T —— SHOC .5km

400/ ™ LES .1km

CWP (g m™?) (No Ice)

‘ 0 5 10
0 10 15 .
Time (hours)

SHOTmé (hﬁucr;)sed. NOTSHOC, no ice

(=)

600
1
%0 NOSHOC 3km
,d.; 500 | NOSHOC 1km
o —— NOSHOC .5km
100 7 2 400 || ™ LES .1km
C}IA 300
€
2
50f - o 200
SHOC 3km =
SHOC 1km O
—— SHOC .5km 100
= LES .1km
0 | | 0 | |
0 5 10 15 0 5 10

Time (hours) Time (hours)



Surface Precipitation Rate (mm d'1) (M2005 Runs)
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Cloud Water + Ice
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SHOC Perfomance Summary

® Compared to LES,
SAM-SHOC performs
well, but so does SAM
without SHOC. Why?

® Even for a 3-km grid
size, most of the TKE
is resolved, so the
turbulence closure is
not very important in
this case.
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Cloud Water Path (LES: 64 km x 64 km domain)
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Sensitivity to physical processes
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Sensitivity to physical processes

Precipitation and Radiation
Sedimentation of cloud ice
lce-phase microphysics

Double-moment microphysics



Precipitation and Radiation
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Ice-phase microphysics
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Double-Moment Microphysics

Distribution of Super-cooled Droplets and Ice Crystals in

Stratus and Cumulus Clouds o ice oryuiae
O SCWD
In strong convective currents—in this case a { water dropiats
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Double-Moment Microphysics
Morrison et al. (2005)
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Summary of LES Comparisons

SAM one-moment microphysics
(unrealistically) produces cloud ice instead
of supercooled cloud water.

Morrison et al. (2005) double-moment
microphysics (more realistically) produces
supercooled cloud water instead of cloud
ice.

Precip. is greater with cloud ice and cloud
ice sedimentation.

Precip. reduces cloud cover and CWP+IWP,



® Radiation tends to increase cloudiness and
precip.

® Because precip. tends to decrease
cloudiness, the net effect of radiation on
cloudiness is small in the presence of
precip., but large without precip.

® More cloudiness produces greater
entrainment.



