Kilometer-Grid Cloud-Resolving Modeling of a TWP-ICE case

CMMAP Reach for the sky.

CMMAP Team Meeting August 2014

Benchmark: LES of the Tropical Warm Pool– International Cloud Experiment (TWP-ICE)

- LES version of SAM
- Horizontal grid size 100 m
- Time interval 2 s
- Domain 204.8 km x 204.8 km x 27 km
- Simulation period: $1/18/06 \rightarrow$
- Time varying LS forcing from field data

	GigaLES 1	GigaLES 2	
Large Scale Forcing	GATE (IDEAL) - stead	TWP-ICE - time-varying	
Radiation	Prescribed steady	RRTM interactive	
Microphysics	Single Moment	Two moment Merrison 2005	
Scalar Advection	MPDATA	Olimate Macho - 5th order	
Duration	24 hours	5 days (and continuing)	

Courtesy: Don Dazlich

Vertical-velocity power spectra (wet period)

SAM-CRM with horizontal grid = 1.6 km

Horizontally averaged cloud water mixing ratio

The time evolution of the mean cloud amount is reasonably simulated by the SAM's 1.6 km CRM.

SAM-CRM with horizontal grid = 1.6 km

Resolvable-scale vertical-velocity variances

But the w-variance is not so good; overestimate at mid and low cld layer

Sensitive to grid spacing? Mean cloud field for dx = 1.6 km & 6.4 km

Due to the poor w-velocity field? w-variance for dx = 1.6 km & 6.4 km

What about the SGS-SHOC scheme?

Mean cloud amounts (and w-var.) from these two 6.4 km-CRM runs are similar.

Zoom-in: <w^2> below 6 km

Frequency ~ 2 hours? Coherent in the vertical?

Having trouble implementing...

