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The precipitation rate, which is directly tied to latent heat release, is approximately balanced by the 0l
ARC rate in equilibrium; this relationship suggests a positive correlation between ARC and -
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precipitation. In contrast, on the regional scale, high clouds cause the precipitation rate and the ARC ** 768 km by 768 km domain. g
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rate to be negatively correlated in both space and time. The radiative warming associated with the & 3 km resolution. 3 1
high clouds promotes regional-scale rising motion and so feeds back to enhance the regional i —
precipitation rate. This incongruence is cause for a closer investigation of this relationship. ** No diurnal cycle. Constant solar insolation of 413.98 W/m?. or _ si(:;lee ‘
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While investigating the relationship between atmospheric radiative cooling and latent heating— Recent Results | [ LAl | m ‘
specifically how convective self-aggregation impacts this relationship—in a cloud-resolving model, Domain Aver'aged Precipitation 0 n . - - - " - . diLL J
an unexpected process was observed: a strong 10-hour periodic oscillation. The simulations were - Precipitable Water
performed using the System for Atmospheric Modeling for a period of 100+ days over a 768 km 1 | | Precipitation Rate ol '
square domain with no large-scale forcing and no rotation. Once convection aggregates and ol
precipitation reaches a sustained increased level, the precipitation rate fades in and out so that the ol - ]
minimum is approximately 20% of the maximum within each period. The same pattern is observed 10} - € 4l
in moisture and energy fields, though the strongest fluctuations occur in the precipitation rate. > i
These simulations were run using both single and double-moment microphysics and this trend is L} 35|
insensitive to the microphysics. E or h | 30 l . . . ' 1 . l l
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, | N Figure 6. Comparison of the domain-averaged atmospheric radiative cooling rate (top), precipitation rate (middle),
U‘ w | J w and precipitable water (bottom) using single-moment and double-moment microphysics schemes.
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3f . - step oscillation £ || | ¢ A consistent 10-hour oscillation is present in the aggregated state.
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\ I . ' LV;’;::)TSEEOH - and high peaks. | _ ¢ The oscillation is observed in all moisture and energy fields, but the fluctuation is strongest in
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- toward Su’ilface associated with Figure 3a (top). Domain averaged precipitation rate over the 110-day simulation. Double-moment microphysics used. ¢ The oscillation is insensitive to microphysics.
! . 7 : warm air produces igure above). A closer look at the precipitation rate from day ours) to day ours). Vertical lines
Jwarms the o O ir prod Figure 3b (above). A closer look at th from day 85 (2040 hours) to day 91 (2184 hours). Vertical |
0 8 b ) precipitation mark 20-hour intervals (starting at hour 2039).
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Figure 2. The temporal (seasonal) correlation between ARC and precipitation Figure 5. Snapshots of the domain in the aggregated state. The two panels show examples of the minima (left) and
rates calculated from monthly observations?3 (2000-2014). maxima (right) of the precipitation rate.




