BREAKING THE CLOUD
PARAMETERIZATION
DEADLOCK
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Progress on the cloud parameterization problem has been too slow. The authors advocate a
new approach that is very promising but also very expensive computationally.

THAT REFUSES TO DIE. Clouds of many
varieties fill the global atmosphere (Fig. 1). They
are composed of drops and crystals with scales on the
order of microns to millimeters. They are associated
with convection and turbulence on scales of meters
to kilometers. They are organized within mesoscale
and synoptic-scale dynamical systems that interact
with the global circulation of the atmosphere.
The representation of cloud processes in global at-
mospheric models has been recognized for decades

c LOUDS AND CLIMATE: A PROBLEM

Fic. 1. A full-disk visible image showing many cloud sys-
tems, including the intertropical convergence zone of
the tropical eastern Pacific Ocean, marine stratocumu-
lus clouds west of both South America and North
America, and frontal clouds in the midlatitudes of both

hemispheres.
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Figure 2. Position of isentropes (black lines) with respect to model coordinate surfaces (red
lines) with an Eulerian coordinate model (top) and hybrid coordinate (bottom).
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Figure 1. Tracer transport: Eulerian vs. hybrid coordinate.
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Shallow Cumulus Cloud Amount

Pressure [hPa]
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The profile of cloud amount from three models (colors) through about the lowest 4 km of the
atmosphere. The profiles are conditioned on environmental conditions conducive to shallow
cumulus convection. The SP-CAM (green) shows the most realistic profile considering cloud
base, cloud top, and the shape and size of the profile.
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Cloud effects on climate from the NCAR
CAM3 (above) and GFDL AM2 (below)
general circulation models. Red indicates
a positive cloud effect wherein clouds
change to enhance climate warming,
blue indicates a negative cloud effect.
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Entrained parcel position at entrainment is superimposed on cloud albedo picture .

Each green circle represents each parcel entrained at this moment. Comparison

with the right plot, it is obvious that entrainment takes place at cloud holes.
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Goals of Knowledge Transfer with
Weather and Climate Centers

CLIMATE SENSE

- A MULTI-DISCIPLINARY PUBLICATION ABOUT THE EARTH'S CLIMATE

Improved understanding
of multiscale phenomena
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KT strategy: A feedback loop

Simulated cloud field. Whiter color has larger cloud water. Narrow darker
places at cloud top are sinking.
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Figure 2. Droplet effective radius (micron) for the Sp-CAM simulations with the new Wim . .

microphysics scheme (top) and satellite retrieved estimate from MODIS (bottom). Figure |. Plots of shortwave cloud forcing for the Sp-CAM simulations using the old (|-moment; top left)
and new (2-moment; top right) microphysics schemes, along with the satellite estimates (ERBE; bottom).

Climate simulations using
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Framework
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: L] Figure |. July-September cli logical precipitation (filled contours) and 925 hPa winds (vectors) from
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observations (TRMM and ERA-Interim), SP-CCSM and CCSM. This figure shows the distribution of
precipitation during the peak monsoon season. As you can see the addition of the superparameterization
shifts the maximum in precipitation from over the Gulf of Guinea in CCSM to over the continent in SP-CCSM.
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Observations Figure 3. Longitude-height cross sections of meridional wind along 10°N regressed onto an index of AEW activity .
4 — 7 based on filtered outgoing longwave radiation (OLR). Figures are scaled based on the variability in OLR in each data e
L source. This figure highlights that the vertical structure of African easterly waves is similar in SP-CCSM compared Fig-2. Evolution of vertical component of vordcity a 1.5k height. Q3-D MMF and GCM-only
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Figure 2. Composite over 15 realizations for surface precipitation rate

(mm h*') for the noted simulations. The black curve is the composite ‘e , §
mean. The blue hash-filled region bounded by the dot-dashed lines denotes ’
the *1 standard deviation across the realizations. The red curve references
the timing and relative magnitude (0%-100%) of the large-scale forcing; no " ®
specific values are implied. Note: not all precipitation axes are on the
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