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Do we observe an increase in extreme rain rates in response to an increase in water vapor? 
Are differences in extremes related to dynamics or microphysics? 

Role of Dynamics 

Role of Microphysics 

  

 Accurately measuring global 
precipitation is key to understanding the 
water and energy budgets of the Earth. This 
project focuses on the expected increase of 
extreme precipitation over tropical oceans in 
response to an increase in water vapor. As 
surface temperatures increase due to a 
warming climate, the water holding capacity 
of the atmosphere will increase at roughly 
7%K-1 according to the Clausius-Clapeyron 
equation (Trenberth et al. 2003). Arguments 
have been made stating that an increase in 
water vapor will correspond to a 
corresponding increase in precipitation rates 
which would lead to a significant increase in 
extreme rain rates with fewer light and 
moderate events (Trenberth et al. 2003, 
Allen and Ingram 2002, Meehl 2000).  

 The Global Precipitation Measurement 
(GPM) Core Observatory satellite was 
launched on the 28th of February 2014 as a 
shared project between NASA and JAXA. 
The satellite offers an ideal platform to 
observe precipitation rates that can be 
related to the water vapor content of the 
atmosphere. Probability density functions 
(PDFs) of rain rates were created using a 
merged dataset comprised of GMI and 
ERA-Interim reanalysis data. PDFs were 
generated for a small percent change in 
water vapor in similar climatological 
regimes: tropical oceans. This same 
experiment was performed for separate 
categories of CAPE and vertical profiles of 
specific humidity.  

 Using a merged GPM and ERA-Interim dataset, a comparison between probability density functions of rain rates in a summation of five tropical ocean boxes was made. 
Three comparisons of differing values of water vapor were looked at: 40mm vs. 42mm, 50mm vs. 52mm, and 60mm vs. 62mm. All boxes consist of a 30°×30° square from 15°N to 
15°S with varying longitudes as shown in figure 4. To understand a role of dynamics, CAPE values were separated into a high and low category for each ocean box. In order to look 
at a role microphysics and cloud structure play on extreme rain rates, specific humidity values were taken at 950mb and 500mb. The mean value at each pressure level was 
computed. PDFs were generated for values above the mean at both levels and for values below the mean at both levels.  

Role of Water Vapor 

-  CAPE is not a good precursor for heavy rain events in the tropics 
-  Agrees with Barkidija & Fuchs (2013), Sobel et al. (2004), and Yano et al. (2005)  

Figure 1. PDF of rain rates at water vapor values of 40mm(red) and 42mm(blue). 

Figure 3. PDF of rain rates at water vapor values of 60mm(red) and 62mm(blue). 

Figure 2. PDF of rain rates at water vapor values of 50mm(red) and 52mm(blue). 

Yearly Averaged Global Rain Accumulation     
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Figure 5. PDF of rain rates for low values of CAPE over all ocean boxes. 

Figure 6. PDF of rain rates for high values of CAPE over all ocean boxes. 
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Ocean Boxes Histogram TCWV 50 vs. TCWV 52 

Ocean Boxes Histogram TCWV 60 vs. TCWV 62 
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-  Increase in water vapor not associated with increase in 
extreme rain rates 

-  Increase in light rain events from 40mm to 50mm with the 
opposite occurring between 50mm and 60mm 

Figure 11. PDF of rain rates 
for high values of specific 
humidity over all ocean 
boxes. 

Figure 12. PDF of rain rates 
for high values of specific 
humidity over all ocean 
boxes. 

Figure 13. PDF of rain rates 
for high values of specific 
humidity over all ocean 
boxes. 

Figure 10. PDF of rain rates 
for low values of specific 
humidity over all ocean boxes. 

Figure 8. PDF of rain rates for 
low values of specific humidity 
over all ocean boxes. 

Figure 9. PDF of rain rates for 
low values of specific humidity 
over all ocean boxes. 
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Evolution of Extreme Precipitation: A Satellite 
Based Investigation 

-  An increase in water vapor alone does not increase precipitation rates 
-  CAPE is poorly correlated with rain rates in the tropical oceans  
-  Specific humidity values show little correlation between high and low values and rain 
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Future Work 
-  Using GPM satellite for three dimensional structure of rain and microphysical 

properties 
-  Generating normalized PDFs 
-  Tracking global oscillations such as the Madden-Julian Oscillation  - Little correlation between specific humidity and rain rates 
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Figure 4. Yearly averaged rain accumulation for a year of GPM data with five dynamically different ocean boxes. 


