ECMWF IFS with Super-Parameterization: Preliminary Results

Marat Khairoutdinov Stony Brook University

Collaborators:

Peter Bechtold Glenn Carver Filip Vana

Tim Palmer Aneesh Subramanian

1032

0 1028

1008

Superparametrization (SP)

IFS - Integrated Forecast System

- Atmospheric model and data assimilation system (4D-Var)
- Developed and maintained by the European Centre for Medium-Range Weather Forecasts (ECMWF);

1022

- Global model; runs every twelve hours;
- Up to 15-day forecasts;
- Deterministic forecasts (resolution of 16 km, 137 levels)
- 51-member ensemble forecasts (32 and 64 km, 91 levels);
- Used to create reanalysis products like ERA-40 and ERA-I;
- Monthly and seasonal forecasts with coupled system;
- **Current operational cycle (version) 41R3**

SP-IFS - Super-parametized IFS: History:

 First implemented in OpenIFS, which is a free running IFS(cycle 38RI), but without data assimilation system;

- First experiments have been performed using T42 L91 resolution (~2.8° x 2.8°);
- SP: 32 x 74; Δx=4 km; IFS' cumulus and all cloud parameterizations are switched off;
- Preliminary results of T42 were interesting to warrant further tests with T159 (~1.125° x 1.125°) using ECMWF's supercomputer;
- Fall 2014: SP is implemented in IFS Single-Column Model CY40R1 and in IFS CY40R3;
- SP can be chosen as an option when setting the IFS run using prepIFS system;
- Currently, implemented in latest operational CY41R3.

JJA Precipitation TI59

SP-IFS

GPCP (OBS)

Mean climatology of SP-IFS doesn't look bad for a model which hasn't been properly tuned.

IFS

Frequency Spectrum (Subseasonal): Precipitation in Tropics (15°S-15°N) Symmetric

Frequency Spectrum (S/N): Precipitation in Tropics (15°S-15°N)

Variance: 20-100 day filtered precipitation

Variance: 20-100 day filtered U850

Summer (May-Oct)

Winter (Nov-Apr)

MJO eastward propagation

Lag correlation (U850, Winter)

ERA40

Reference domain: 1.25S-16.25N, 68E-96E

* US CLIVAR MJO Diagnostic metrics

SP-IFS

-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Summer ISO northward propagation

Tuning.

Bias in OLR in SP-IFS CY40R1 forecast

SP-IFS (before tuning)

Tuning for cloud fraction using SCM IFS (TWP ICE case)

Bias in OLR in SP-IFS CY40R1 forecast

SP-IFS (before tuning)

Bias in OLR in SP-IFS CY40R1 forecast SP-IFS (after tuning)

Ensemble forecasts with SP-IFS Tim Palmer and Aneesh Subramanian

Forecast Error and Spread in Precipitation:

(Initial date: Oct 21, 2011) + 240h

Error in Precipitation is of same order of magnitude, but spread is greater in SSP IFS Hence, SSP IFS is a more reliable forecase ensemble for precipitation in this case.

- The management seem very impressed by the SP-IFS capability.
- Both Heads of Research and Forecast Departments are very supportive to further explore possibilities of IFS with SP option.
- The SP code will continue to be supported in future IFS cycles as auxiliary option.
- Full access to the ECMWF supercomputing resources is given.
- Near-term plans:
 - Climate runs (AMIP style)
 - Monthly and seasonal forecasts
 - A paper to document the model