Convective self-aggregation and the Madden-Julian oscillation

Nathan Arnold NASA Goddard Space Flight Center

David Randall Colorado State University

CMMAP Summer Team Meeting

Convective Aggregation in Cloud Permitting Models

Expectation: random popcorn convection in Radiative-Convective Equilibrium (RCE) state.

Muller and Held 2012

Convective Aggregation in Cloud Permitting Models

Muller and Held 2012

Under some conditions, convection aggregates into single humid region.

Convective Aggregation in Cloud Permitting Models

Wing and Emanuel 2014

Triggered by clear-sky radiative instability?

Temperature dependent! Critical temperature is 30-35°C.

Diabatic feedbacks are generally required

Bretherton et al 2005: turn off either interactive longwave or surface fluxes, and aggregation doesn't occur.

In other studies, surface flux feedback can be optional.

Longwave associated with high clouds in convecting region.

Bretherton et al 2005

Radiative effect of low clouds also essential?

Anti-social cold pools

Without cold pools, aggregation doesn't require LW feedback: "Moisture memory"

Aggregation in nature?

- Limited evidence for mesoscale aggregation as seen in CRMs
- Time-scale for aggregation is long; most mesoscale systems would be sheared apart in the real world.
- Aggregation processes as tendencies for/against clumping?

The Madden-Julian Oscillation (MJO) (an example of aggregation?)

- Large-scale disturbance of wind and precipitation with ~50-day timescale.
- Forms episodically over Indian ocean, propagates eastward at 4-6m/s.
- Region of enhanced convection coupled to suppressed regions through large-scale circulation.
- Poorly understood.

Matthews 2013

MJO is poorly understood, poorly simulated in GCMs

MJO is effectively nonexistent in most models

The Holy Grail of Tropical Meteorology

40+ years of MJO theories…

 Wind-Induced Surface Heat Exchange Emanuel (1987); Neelin et al. (1987)

Frictional coupled K-R waves Wang and Rui (1990)

Cloud-radiative interaction Hu and Randall (1994); Raymond (2001)

Multi-scale interaction Majda and Biello (2004); Liu and Wang (2011)

Triggered convection, IG wave interference Yang and Ingersoll (2014)

Moisture mode

 Sobel et al (2001); Bony and Emanuel (2005); Sugiyama (2009); Raymond and Fuchs (2009); Sobel and Maloney (2012)

Water vapor as rainfall regulator

Efficient latent heating in humid environments. Suppressed heating in dry environments.

e.g., Bretherton et al. 2004, Derbyshire et al. 2004

Water vapor as rainfall regulator

e.g., Bretherton et al. 2004, Derbyshire et al. 2004

Water vapor as rainfall regulator

"Moisture mode instability" occurs when net feedbacks increase the original moisture anomaly.

e.g., *Sobel et al (2001); Raymond and Fuchs (2009)*

Looks very similar to CRM aggregation!

- Feedbacks amplify moisture anomalies
- Enhanced convection/rainfall co-located with moisture

On the other hand…

"There is little evidence that feedbacks between convection and moisture play an important role in self-aggregation in this model..." \sim Emanuel et al., 2014

Muller and Bony (2015) argue for separate "radiative" and "moisture memory" pathways to aggregation.

Difference in scale

Very idealized setup: A non-rotating planet powered by starlight

- No Rotation.
- Uniform downwelling shortwave: $z= 50.5$ °, S = 650.83W/m² (following Bretherton et al 2005)
- Uniform SST, fixed at 27°C.
- No seasonal or diurnal cycle.
- Running SP-CAM3.5 / 3.0
	- SLD dycore, T42
	- CPMs: 32x4km columns
	- Known to have realistic MJO

Super-parameterized convection: embedded Cloud-Permitting Models

Aggregation from a uniform state of rest

Aggregation from a uniform state of rest

Distribution is strongly bi-modal. Moist regions are

2000-4000km across.

TPW, day 120

Aggregation from a uniform state of rest

Distribution is strongly bi-modal.

Moist regions are 2000-4000km across.

Aggregation Moist Static Energy Budget (days 5-25)

120E

60E

 $^{\circ}$

180

120W

60W

Initial aggregation driven by diabatic terms, opposed by advection.

MSE Variance Budget, binned by column MSE

$$
\frac{1}{2\langle h'^2\rangle}\frac{\partial}{\partial t}h'^2=\frac{LW'h'}{\langle h'^2\rangle}+\ldots
$$

- Product of budget term and MSE anomalies = measure of anomaly growth rate due to term.
- Sort into 100 bins, ranked by column MSE.
- Yields growth rates in timemoisture space.

Red = amplifies anomaly Blue = weakens anomaly

Following Wing and Emanuel (2014)

MSE Variance Budget, binned by column MSE

$$
\frac{1}{2\langle h'^2\rangle}\frac{\partial}{\partial t}h'^2=\frac{LW'h'}{\langle h'^2\rangle}+\ldots
$$

- Product of budget term and MSE anomalies = measure of anomaly growth rate due to term.
- Sort into 100 bins, ranked by column MSE.
- Yields growth rates in timemoisture space.

Red = amplifies anomaly Blue = weakens anomaly

Following Wing and Emanuel (2014)

"Mechanism Denial" Experiments

Aggregation does not occur without interactive longwave!

"Mechanism Denial" Experiments

Uniform longwave heating Uniform surface fluxes

Aggregation does not occur $12¹$ Uniform LW without interactive longwave!

Surface fluxes help, but are not essential.

Why does vertical advection contribution reverse?

Day 8:

Top-heavy circulation, reduces MSE anomalies.

Day 30: Dry-region subsidence more bottom heavy.

Shallow circulation provides up-gradient transport.

This is similar to the shallow circulation found in CPMs by Bretherton et al (2005) and others.

Distinguishing low vs high clouds

Aggregation does not occur without high cloud LW effect. Removing low cloud feedback has little impact. Differs from Muller and Held (2012) CRM aggregation.

Restoring full rotation: Model produces an "MJO"

See also: Grabowski (2003/04)

Restoring full rotation: Model produces an "MJO"

Upper level wind and vertical development of humidity anomalies resemble the real-world MJO.

See also: Grabowski (2003/04)

MJO MSE budget similar to aggregation

- Supported by longwave.
- Strong damping from horizontal advection.
- Surface fluxes weakly damp MSE anomalies.
- Vertical advection supports anomalies except in core of moist region.

30

30S

60E

120E

180

Comparison with conventional CAM: Weaker MJO, weaker aggregation

CAM has trouble generating moisture variance

Why doesn't CAM form humid regions?

One likely reason: CAM rainfall is insensitive to humidity.

Exhibits high rainrates with relatively low humidity, can't build up moisture anomalies.

Thayer-Calder and Randall (2009)

Increasing moisture sensitivity via entrainment

In CAM3.5, the deep convection scheme uses a dilute plume to estimate CAPE.

This can increase sensitivity to midlevel humidity.

As entrainment is increased, aggregation becomes stronger.

Summary so far

- In uniform non-rotating simulations with SP-CAM3.0, convection aggregates into ~4000km clusters.
- An MSE budget and mechanism denial experiments show the SP-CAM aggregation is driven by processes similar to CPMs:
	- Initially driven by longwave, with help from surface fluxes.
	- Shallow circulation develops and supports aggregated state.
- When rotation is added the model produces an MJO, with an MSE budget similar to the non-rotating aggregation.
- In the conventional CAM, aggregation is much weaker, consistent with its weaker MJO. Increasing the convective entrainment rate increases both MJO activity and aggregation.
- Consistent with "moisture mode" theories, less consistent with others, e.g. multi-scale model or IG wave interference.

Scale Selection

Why is the MJO envelope ~10000 km across?

Why are the non-rotating blobs ~4000 km across, rather than 500 km or 20000 km?

Structure varies with model / setup

In CAM5, very sensitive to setup and physics!

In SP-CAM, scale insensitive to resolution

Little difference between T42 and T85.

MJO scale is independent of planetary radius

Convective zonal extent remains at ~10000 km on larger planets.

MSE zonal wavenumber spectrum

Spectrum is still white on day 3, but scale selection noticeable by day 5.

Some published ideas…

• Kuang (2008): Vertical structure wavelength dependence

But in SP-CAM, larger scales have more top-heavy profiles!

Clues from the spectral MSE budget

$$
\hat{\Psi}(k) = Re \left\{ \frac{\hat{h}^*(k)\hat{X}(k)}{\hat{h}^*(k)\hat{h}(k)} \right\}
$$

Fractional growth rate of MSE anomalies due to budget term X.

Growth rate due to LW

0.60

Shear as a scale selection mechanism

Advection of high clouds by horizontal winds:

Shear as a scale selection mechanism

Advection of high clouds by horizontal winds:

Not direct advection of moisture that matters, but the varying correlation between high clouds and column moisture.

Shear as a scale selection mechanism

Advection of high clouds by horizontal winds:

Not direct advection of moisture that matters, but the varying correlation between high clouds and column moisture.

Longwave anomalies would only be positively correlated with moisture at long wavelengths.

Coherence Spectra

Total water tendency from horizontal advection is positively correlated with total column water at long wavelengths.

Coherence Spectra

Total water tendency from horizontal advection is positively correlated with total column water at long wavelengths.

Coherence Spectra

Total water tendency from horizontal advection is positively correlated with total column water at long wavelengths.

Vertical profiles over time, by wavenumber

Conclusions II

- Aggregation spatial patterns depend on model parameters, resolution, SST interactivity.
- In SP-CAM, non-rotating aggregation and the MJO both have preference for a specific physical scale.
- In SP-CAM, diabatic feedbacks are primary source of MSE "coarsening."
- Longwave scale selection may be explained by shearing of low moisture and high clouds.