Improving Simulated Low Clouds in CSRM/GCM with Dual Vertical Resolution Framework

Takanobu Yamaguchi CIRES CU / NOAA ESRL

Graham Feingold, Vincent E. Larson NOAA ESRL UWM

Low clouds in global models are still poor getting better.

Cheng & Xu (2015): CAM5-IPHOC

• GCM

- CAM5-CLUBB (Bogenschutz et al. 2013)
- ► AM3-CLUBB (Guo et al. 2014)
- ► CAM5-IPHOC (Cheng and Xu 2015)
- MMF
 - SPCAM-IPHOC (Cheng & Xu 2011)
 - SPCAM-CLUBB (Wang et al. 2015)

PBL parameterization improves low clouds in CSRM.

Larson et al. (2012): SAM-CLUBB (90-level stretch grid, $\Delta z \sim 140$ m at 1 km)

or vertical resolution?

or vertical resolution?

Schemes for advection, microphysics, radiation, & turbulence exhibit sensitivity to Δz

or vertical resolution?

Schemes for advection, microphysics, radiation, & turbulence exhibit sensitivity to Δz

Which processes are more sensitive to Δz ?

Dual Vertical Resolution Framework (DVRF)

- A model updates quantities on two vertical levels: low resolution (LR) and high resolution (HR).
- Each process is computed on either LR or HR level.
- One constraint: Mass-weighted layer mean of HR value **always** has to be equal to the corresponding LR value.
 i.e., Φ_{LR}(k) = Σ[ρ(i)Φ(i)Δz(i)] / ρ_{LR}(k)
- DVRF = MMF type approach in z

low resolution high resolution

A new LR tendency interpolation scheme satisfies the constraint between LR and HR.

DVRF in SAM-CLUBB

- DVRF is implemented in SAM-CLUBB.
- CLUBB, microphysics, radiation, and vertical advection for scalar can be processed on HR.
- Prognostic variables on HR: u, v, LWSE, micro.
- w & subsidence are linearly interpolated from LR.
- This version of SAM-CLUBB can be run as a 1D model.
- Tests are performed for DYCOMS-II RF02 (nocturnal drizzling stratocumulus case): Δx = 16 km, Δt = 10 s, 12-h duration, GCSS simple LW code.

	∆z _{LR} (m)	∆z _{HR} (m)	processes on HR
L80	20	20	n/a
L16	100	100	n/a
L16-H80-C	100	20	CLUBB
L16-H80-M			microphysics
L16-H80-R			radiation
L16-H80-W			vertical advection
L16-H80-CM			CLUBB, microphysics
L16-H80-CR			CLUBB, radiation
			•••

LR CLUBB can not see the variability created on HR.

LR CLUBB can not see the variability created on HR.

Is DVRF useful for simulation?

- DYCOMS-II RF02
- $N_x = 16$ and $\Delta x = 16$ km
- A warm pool (i.e., stronger surface fluxes) to generate stronger horizontal gradient.
- W on HR
 - Only subsidence is processed on HR.
 - Modification for scalar advection is ongoing.

- DYCOMS-II RF02
- $N_x = 16$ and $\Delta x = 16$ km
- A warm pool (i.e., stronger surface fluxes) to generate stronger horizontal gradient.
- W on HR
 - Only subsidence is processed on HR.
 - Modification for scalar advection is ongoing.

- DYCOMS-II RF02
- $N_x = 16$ and $\Delta x = 16$ km
- A warm pool (i.e., stronger surface fluxes) to generate stronger horizontal gradient.
- W on HR
 - Only subsidence is processed on HR.
 - Modification for scalar advection is ongoing.

- DYCOMS-II RF02
- $N_x = 16$ and $\Delta x = 16$ km
- A warm pool (i.e., stronger surface fluxes) to generate stronger horizontal gradient.
- W on HR
 - Only subsidence is processed on HR.
 - Modification for scalar advection is ongoing.

Accurate and faster radiation calculation

local HR profile

- The HR profile around cloud top is embedded into the LR profile (local HR profile).
- DVRF always has the HR profiles, so no interpolation is necessary unlike an adaptive level method.

Results

Summary and outlook

- Diagnosis with DVRF shows that
 - CLUBB only on HR evaporates stratocumulus.
 - Vertical transport on HR improves results greatly.
 - Radiation may be computed on LR.
- Is DVRF useful for simulation?
 - Adaptive level method is easily utilized and gives accurate results because HR profiles are known.
 - DVRF can distinguish between stratocumulus and shallow cumulus
 e.g., radiation calculation on LR for shallow cumulus.
 - Grey zone? Cirrus cloud?

Interpolation scheme for LR tendency to HR

- First guess value at the LR interface level (•).
- Estimate value at the LR center level
 (•).
- Interpolate with and to get •.
- Limiter
 - Bound with the maximum magnitude of inflection value (= inflection factor × LR value).
 - Shift the interface value so that layer mean = LR value (•).
 - Construct with bounded and •.

