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When truncation is made in or near an energetically-active range of

the spectrum, model physics must also be changed as the resolution

changes.

MOTIVATION  AND  GOAL

At present, there is no unified formulation of model physics that automatically

provides such changes.

Use of a discrete model can be justified only when its solution

converges to the solution of the original system as the resolution

is refined.

Since the original system is 3D, a converging framework must be at least quasi-3D.
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These models truncate the atmosphere

at different places of the spectrum, 

but this is done entirely for practical purposes,

having little to do with

the existence of spectral gaps in nature.

Three Families of Models



 Increasing resolution
with conventional GCM physics
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Unified model (non-existing)

A serious doubt on
the merit of some of the fancy techniques 

such as “Adapted Mesh Refinement”. 

ideally, 
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Virtually no progress is being made.

  Quasi-
3D MMF

MMF

Uses CRM physics
while using a coarse resolution

for the GCM



HIERARCHY of QUASI-3D CRM AND MMF
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GCM grid box GCM scalar point

HIERARCHY of QUASI-3D CRM AND MMF
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Quasi-3D MMF 

3D CRM

If the GCM and CRM share
the same dynamics core.

Convergence

Truncation

Coupling
with a GCM

Quasi-3D CRM



Quasi-3D CRM :  A prerequisite to a quasi-3D MMF
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Vertical dimension
not shown ghost point

past data

A 4D estimation/prediction problem

with a highly-anisotropic multi-resolution horizontal grid with singular points . . . 

A treasure house of computational problems !

PATIENCE  !

“ If I have ever made valuable discoveries, it has been owing to

   patient attention, than to any other talent.”

Sir Isaac Newton



CLOUD-RESOLVING ANELASTIC MODEL BASED ON THE 3D VORTICITY EQUATION

Water substances (and tracer):

Horizontal components:

Potential temperature: 

Vertical component:

From anelasticity: 
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Prediction of scalar variables

Prediction of vorticity components

Determination of wind components
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A Problem with the Highly Anisotropic Grid :

Error imbalance between

explicitly -resolved tangential derivative and

statistically-estimated normal derivative.

The degree of imbalance is scale-dependent.



MULTI-SCALE REPRESENTATION OF VARIABLES

DETERMINATION OF 3D STRUCTURES

Normal to grid-point array:
     By statistical Identification of
     cloud regime

(Currently, this field is prescribed.)

q’ q q”

Along grid-point array:
     1D Raynolds averaging of q *

Along grid-point array:
              q* - q’

Normal to grid-point array:
       With a parameterization based
       on isotropy or inferred anisotropy

q     =                 +              +   q’’ , q’q

Typically,             synoptic-scale cloud-system
scale

BACKGROUND
FIELD

COHERENT PART
OF DEVIATION

NON-COHERENT PART
OF DEVIATION

cloud
scale

q*

Determined by interpolatin
of GCM grid-point values



In CRMs with a horizontal resolution of     1km,

parameterization problems still exist even for deep convection
~>

Meso & cloud scalesSynoptic scaleWAVENUMBER SPACE

Conventional model

Parameterization
based on
isotropy

Cloud
regime

identification

Assumption of
slab

symmtry

Prototype MMF Quasi-3D MMF

Additional parameterization problem exists in MMFs,

which have cloud-scale resolution only in limited directions 

(due to the existence of the internal structure and ajacent small-scale processes

such as entrainment, detrainment, convection in anvils, convective downdrafts,

triggering due to surface inhomogeneities, etc.)

Parameterization
of small scales as a whole

kx

ky

In CRMs with a horizontal resolutions of     1km,

parameterization problems still exist even for deep convection
~>



Emphasis of the Development Work up to Now

Normal to grid-point array:
     By statistical Identification of
     cloud regime

q’ q”
Along grid-point array:
     1D Raynolds averaging of q *

Along grid-point array:
              q* - q’

Normal to grid-point array:
       With a parameterization based
       on isotropy or inferred anisotropy

q     =             +   q’’ , q’q

q*

 +
“FILTERED” “NON-FILTERED”

x
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t

Cloud regimes can be statistically inferred through regression analysis of

past data at the intersection and neighboring points.

Cloud regimes have longer spatial and temporal scales than individual clouds.



Technical Problems in Quasi3D Advection

1.    Global stability with 2-dimensional uniform current

2.    Local stability with 3-dimensional non-uniform current 

Regression analysis of past data to identify cloud regimes

3.    Control of singularity at intersections

( 6.    Conservation )

4.    Control of spurious trend

Computational problems

5.    Control of noise



Solving 3D Elliptic Equation using the Quasi-3D Network

In our model, the elliptic equation for w is converted to a parabolic equation whose equilibrium

solution is the solution of the elliptic equation (mimicing the relaxation method).

The second-order finite difference term is estimated based on ghost point values given by
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w’ :  Statistically estimated as in advection

w” :  Currently assumed to be zero

In anelastic models, 3D elliptic equation must be solved.

In momentum-equation models :  for pressure

In vorticity-equation models :         for vertical velocity

No local deformation of the horizontal vorticity vector for cloud scale.



Problem with the Stretching  and Twisting Terms in the Vorticity Equation  

These terms, which are responsible for enstrophy increase and energy cascade in 3D flow,

are missing in 2D models.

The Q3D CRM includes these terms.   

The enstrophy increase and energy cascade must be balanced by dissipation on average.   

So far we have not found a satisfactory formulation of the dissipation for the quasi-3D

network.

Too strong dissipation :    Inactive dynamics
Too weak dissipation:       Blowing up

Dilemma
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stretching twisting

Fully for filtered scale (i.e., for cloud-system scale) vorticity;

Partially for non-filtered scale (i.e., individual cloud scale) vorticity
by neglecting the effect of local deformation on this scale.
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< ~ 10  km,  horizontal advection of  precipitates must be explicitly formulated.  If

Lagrangian view:  All precipitates in the column move into the next column before reaching ground.

Eularian view:        Air of the column is entirely replaced by the upwind-side precipitate-free air.

Horizontal Advection of Precipitates in 3D CRM

Consequently, a significant part of the precipitates can be left in the original column, which tends
to evaporate as a result of drier-air inflow.  

If the precipitating system is poorly resolved                                      by an Eulerian grid, serious
dispersion error may qppear.

( e.g., if ∆x >~ 1 km)



These tendencies can be exaggerated in a Q3D CRM through

Under-estimation of the precipitate mixing ratio at the up-wind side
due to the use of statistics including non-precipitating cases.

Overestimation of the normal component of velocity.

Thus in a CRM with                                                                               the area average of precipitate

due to convection tends to be under-predicted, and the humidity of the convective column

tends to be over-predicted, eventually producing stratiform rain.  

∆x U zpVt
< ~ 10  km,  1 km ~< 

In our tets,  generally the variance of water-vapor mixing ratio over the grid points 
tends to be over-predicted and those of rain/graupel mixing ratios tend to be
under-predicted. 



Unification of Dynamics between GCM and CRM

Two possibilities :

(1)    Use of the fully-compressible nonhydrostatic system of equations for both. 

(2)    Use of a generalized anelastic system of equations for both, with  compressibility

         included only for quasi-static motions. 
=

 + ∇ ⋅ ρV( ) = 0
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This system automsticlly becomes
the primitive equation model

for large scales.
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