Improving the Amazonian Hydrologic Cycle in a Coupled Land-**Atmosphere, Single Column General Circulation Model**

R31C-1138

Modeling the Hydrologic Cycle

• Use of a land-surface model to force a general circulation model should improve the simulation of surface fluxes and the surface water budget.

• A previous version of CSU's coupled models (SiB2-GCM) showed drought and catastrophic dieback of the Amazon rain forest.

• Since that study, many improvements have been made to both SiB and the GCM, warranting a new look at their performance in the Amazon.

• Test site is in the Tapajos National Forest at a monitoring station located near km 83 of the Santarém-Cuiaba highway (3°S, 305°W). Halfhourly observations are available for 2000-2004 as part of the LBA-ECO project.

BUGS5

- Several improvements since 1996 including: • Multiple-cloud-base cumulus parameterization (Ding, 1995)
- Adams-Bashforth time-stepping used for dynamics
- Revised vertical differencing (Suarez and **Arakawa**, 1977)
- Implementation of flux coupler
- New option for radiation scheme (BUGSRAD)
- New microphysical scheme in cumulus
- parameterization (Fowler and Randall, 2002)

SiB2

 Ecophysiological process model describing land-air water, and momentum. • For full model description see P. Sellers, 1996

• Prognostic Canopy Air Space

• Change from 3 to 10 layer soil, with increasing layer thickness with depth and roots in all layers.

FURTHER MODIFICATIONS

10 meters.

• Optimum soil moisture for respiration (w_{opt}) increased to match observations.

• Hydraulic Redistribution allows dry season.

• Attend Ian Baker's talk in MCS 270 at 1700h today to hear how these changes affect carbon exchanges.

In	tensity of	Dry Seaso	n	
Average Mo	onthly Rainfall T	otals, 2001-20	03 (mm)	
	Observed	SiB2-SCM Modi	fied SiB3-SCM	
January	187.69	150.31	111.33	
February	219.32	202.74	152.07	
March	186.02	319.90	238.87	
April	244.92	271.44	165.82	
Мау	163.41	195.62	132.98	
June	140.02	101.59	70.99	
July	55.80	65.79	38.37	
August	34.94	12.72	10.52	
September	52.39	34.70	13.82	
October	32.17	50.91	27.38	
November	96.53	47.66	33.67	Both SiB2
December	66.89	62.69	47.02	
Annual Total	1480.09	1516.10	1042.84	L.
Key: Orange = <100 mm	• Define dry sea mm of rain (Hu	ason as months v lete, 2006).	with less that	n 100 W re T
Red = < 50 mm	• Observed dry	sooson is July_F	Jacomhor	10
old Red = driest month	• Observed dry season is July-December.			
Blue = wettest month	• Overall, SiB c correct dry seas	oupled to the SC son length.	CM simulate	es the co
		8		Po
	• The modified intensity of the	version of SiB3 dry season.	overestimat	es the D

A.B. Harper¹, A.S. Denning¹, M. Branson¹, L. Prihodko², I. Baker¹

¹ Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371 USA ² Natural Resources Ecology Lab, Colorado State University, Fort Collins, CO 80523 USA

•This equation is used to allow the model-produced values of temperature and water vapor to relax back

•q_{in} is the upstream value of temperature or water

• Observed latent heat flux shows much less variability than SiB2-SCM.

• Observed sensible heat flux is also relatively constant throughout the year.

• SiB2-SCM could not accurately represent the moisture budget during the dry season, leading to severe canopy stress.

• The canopy would get very hot due to lack of moisture and increased incoming solar radiation. Since SiB2 did not include the mechanisms by which Amazonian trees adapt to dry conditions, sensible heat fluxes were too high and latent heat fluxes were too low.

April Sensible and Latent Heat Fluxes

One of the wettest months of the year. Mid-day Bowen Ratio of approximately 1:3.

October Sensible and Latent Heat Fluxes

One of the driest months of the year.

BUT mid-day Bowen Ratio is still approximately 1:3.

SiB2-SCM overestimated sensible heat flux in the dry season.

By including hydraulic redistribution, the modified SiB3 accurately depicts the diurnal cycle of latent and sensible heat during the dry season. **Diurnal Precipitation**

The models show a peak in rainfall around 10-11 AM LST.

> This work has been supported by the National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement No. ATM-0425247. For more information, please e-mail: abharper@atmos.colostate.edu

Also Andrew Philpott who did similar work at the ARM-SGP site.