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Scales of Atmospheric Motion
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UNCERTAINTIES IN FORMULATING CLOUD AND ASSOCIATED POCESSES
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Boundary layer clouds in
deep-convection-resolving models (DCRMs)

e DCRMs are CRMs with horizontal
grid sizes of 4 km or more.

e Used in MMF, GCRMs (global
CRMs), and tropical cyclone
models.

¢ [n MMF and GCRMs, DCRMs are
expected to represent all types of
cloud systems.

¢ However, many cloud-scale
circulations are not resolved by
DCRMs.

e Representations of SGS
circulations currently used in
DCRMs can be improved.




Boundary layers in
deep precipitating convective cloud systems

¢ Tropical convective cloud
systems may organize too
readily in the FRCGC GCRM
and in MMF GCMs.

e Possible causes:

e Convectively-generated cold
pools are too strong.

e Boundary layer stabilization
due to shallow convection is
under-estimated.

¢ Poor horizontal resolution may
contribute to both.




Shallow cumulus clouds
and mesoscale organization
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e Typical DCRMs grid sizes are
too large to resolve shallow
cumulus.

-

e A DCRM with a suitable SGS
parameterization should be
able to represent shallow
cumulus and resolved
mesoscale organization.

e LES can be used to provide a
benchmark simulation.




Outline of this talk

¢ |ntroduction
e Objectives of focus

e Scope and
relationship to old
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e Science issues

* Meeting the objectives [l




Introduction

e Objectives of focus:
Improve the representation of SGS convection and turbulence in deep-
convection-resolving models (DCRMs), for use in MMFs, GCRMs, and NWP.

e Scope and relationship to old WGs:
e Extensions, evaluations, and applications of the prototype MMF(s)

e Development and testing of improved parameterizations of microphysics and
radiation for use in CSRMS, MMFs, and GCRMs

e Development and testing of improved parameterizations of boundary layer
clouds and turbulence for use in CSRMS, MMFs, and GCRMs

e Accelerated improvement of conventional parameterizations
e Optimal use of computational and data storage resources

e Knowledge-transfer to climate modeling centers

e Knowledge transfer to numerical weather prediction centers




Science Issues

Representation of the following cloud systems and boundary layer
regimes in DCRMs:

e Deep precipitating convective

e Transition from shallow to deep convection

e Diurnal cycle of shallow convection over land
¢ Trade cumulus

e Marine stratocumulus

e Cold-air outbreaks over mid-latitude oceans
e Convective plumes from leads during winter

e Boundary layers over inhomogenous surfaces or terrain




Meeting the Objectives

Develop and test improved representations of SGS convection and turbulence
in DCRMs.

e Proposed parameterizations

e PDF/HOC: Cheng & Xu, Lappen & Randall

e Jwo-scale MMF: DCRM plus boundary-layer-eddy-resolving model (ERM)
e Additional physics to be included

e Effects of surface inhomogeniety (elevation, land surface properties): both
resolved by the DCRM and SGS

¢ Proposed evaluation methods
¢ Analysis of and comparison to benchmark simulations

e Comparison to observational datasets




Boundary-layer Clouds in a Multi-
scale Modeling Framework (MMF)

Anning Cheng- Kuan-Man Xu- Yali Luo,
Jiundar Chern, and Wei1-Kuo Tao




Joint PDF of total water and liquid
water potential temperature
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Continental shallow cumuli (ARM
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Randall, D. A.,, Q. Shao, and C.-H. Moeng 1992
Second-Order Bulk Boundary-Layer Model. J. A
SCio’ 49, I903-I923o .

These papers show that:

flux methods can be married with higher-order
SUl e.




Proposed Evaluation Methods

e Benchmark simulations

¢ | arge-domain LES (e.g., 100 km x 100 km domain,
0.1 km grid size)

e Compare to DCRM results using various SGS
parameterizations.

e Compare to SCM results.

® Analyze results to gain insight into scale interactions,
etc.




High-Resolution Simulation of Shallow-to-Deep
Convection Transition over Land

(Khairoutdinov and Randall 2006)
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Figure 8. PDF of cloud size as a function of height shown for three different simulation times. Mean and
standard deviations are shown by the white and yellow lines, respectively.

150 km x 150 km, 100 m grid size, 6 h




Grid-size dependence in a large domain LES

¢ RICO trade wind cumulus case: 19 Jan 2005

e Control simulation: 100 m horizontal grid size, 40 km X
40 km domain, 24 h simulation

¢ Grid-size dependence simulations: 500 m, 1000 m,
2000 m, 4000 m horizontal grid sizes, otherwise
unchanged from control

* Next: stereo images of clouds at 12 h
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Avgd to 1000 m

log 10 of Liquid Water Path (g/m2), hour 12




|]000 m

log 10 of Liquid Water Path (g/m2), hour 12
40 — e~ L ' ' \Z

35

15

10




cloud fraction

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Cloud Fraction

100 m
=500 M
= 1000 M
2000 m

4000 m
I

200

400

600 800
time (min)

1000

1200

1400




last 6 hrs 100 m | 500 m | 1000 m | 2000 m | 4000 m

cloud fraction 0.18 0.28 0.58 0.87 0.94
LWP (g/mQ) 23.9 26.7 46.0 69.1 96.7

precip rates (mm/hr) | 0.003 | 0.022 | 0.050 | 0.038 | 0.070
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Proposed Evaluation Methods

e Observational datasets

* High-resolution cloud properties from satellites:
MODIS, ISCCRP, etc

e\/ertical structure of clouds: CloudSat, ARM MMCR,
TRMM

¢ High-resolution hourly precipitation from rain gage
and unbiased radar

e Surface mesonet observations of T, RH, p, u, v

e Aircraft-based measurements during field
experiments




