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A concluding remark of our presentation at the last meeting :

“ It seems that we are approaching the limit of the “piece by piece” test strategy

and we should start to couple the Q3D CRM with a GCM soon.”
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We realize, however, that

formulation of the coupling is a big problem

regardless of the dimensionality of the CRM.



THE PROBLEM OF COUPLING THE TWO COMPONENTS OF MMF

The basic structure of conventional GCMs

Conventional GCMs

Forcing

RESOVED PROCESSES

\

MMF inherits this basic structure

Separated
by

grid size

PARAMETERIZED

MMF

GCM Effect
on CRM

GCM COMPONENT

PROCESSES

/

~{ Feedback |~

Separated
by GCM
grid size

CRM COMPONENT

CRM Effect
on GCM

The classical closure problem of cumulus parameterization is now replaced by

the problem of formulating the coupling of the two components.




To study the coupling problem in a way independent of the dimensionality,

we use

3D CRM (for benchmark simulation) 3D MMF (for testing of coupling)
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We formulate the couplimg of the GCM and CRM components
through prognostic variables of the GCM
and the corresponding subset of CRM prognostic variables.

Let q be one of such variables.
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Approach A : Explicit Formulation as Forcing and Feedback

® Resembles the (original) Arakawa-Schubert type parameterization

® Roughly corresponds to the approaches followed by

Grabowski and Smolarkiwiecz (1999) for thermodynamic variables, and

Khairoutdinov and Randall (2001) for both thermodynamic variables and momentum
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Then,

(A) : interpolated or uniformly given

S, and S, must be mutually exclusive to avoid double counting

—(qG—<qC>):0 since <q,. >=q,

® Thus prediction of 4 is entirely done by the CRM.

® The copling is so rigid that If the GCM is in a quasi-equilibrium, the CRM is
also in a quasi-equilibrium.



Approach B: Formulation as Mutual Adjustments

e Resembles the Betts-Miller parameterization

e Roughly corresponds to the approach followed by
Grabowski and Smolarkiwiecz (1999) for momentum.
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e The stationary solution of the last equation indicates that q. and < q.> are
not compatible.

® Since g tends to be adjusted to q,. , 4. may be excessively damped.

® Anidealized model for the interactin between cloud and large scales shows that
convective activity is under-predicted when T . < T . and over-pedicted when T _>T .



Approach C Hybrid Approach

Principles followed :

I. The GCM and CRM components should be compatible in the sense q. =<q. >
at least for time scales longer than the physical adjustment time scale.
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Similar to Approach B

Il. The CRM should recognize the GCM through large-scale forcing without delay
while the adjustment of the GCM variabkes by the CRM may require a finite time.
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Resuces to Approch A in the limit t — 0.



