Outline

There will be two parts:

I) Development of the 3D poisson equation solver

2) Development of the advection based on grids associated

with the icosahedral grid

3D Poisson equation solver

Based on Arakawa, Jung and Konor

 \clubsuit The equation we are interested is this:

$$\nabla^2 w + \frac{\partial}{\partial z} \left[\frac{1}{\rho} \frac{\partial}{\partial z} (\rho w) \right] = rhs$$

✤ Re-write as a parabolic equation:

$$\mu \frac{\partial w}{\partial t} = \nabla^2 w + \frac{\partial}{\partial z} \left[\frac{1}{\rho} \frac{\partial}{\partial z} (\rho w) \right] - rhs$$

The Discrete form of the equations

The discrete form of the equations looks like this:

$$\mu \frac{w_{i,k+1/2}^{(\kappa+1)} - w_{i,k+1/2}^{(\kappa)}}{\delta t} = \frac{1}{A_i} \sum_{i'} \frac{w_{i+i',k+1/2}^{(\kappa)} - w_{i,k+1/2}^{(\kappa+1)}}{L_{i;i+i'}} l_{i;i+i'}$$

$$+ \frac{1}{\delta z_{k+1/2}} \left[\frac{1}{\rho_{k+1} \delta z_{k+1}} \left(\rho_{k+3/2} w_{k+3/2}^{(\kappa+1)} - \rho_{k+1/2} w_{k+1/2}^{(\kappa+1)} \right) - \frac{1}{\rho_k \delta z_k} \left(\rho_{k+1/2} w_{k+1/2}^{(\kappa+1)} - \rho_{k-1/2} w_{k-1/2}^{(\kappa+1)} \right) \right] - rhs_{i,k+1/2}$$

Re-arrange to form an implicit tridiagonal system in the vertical:

$$\frac{\rho_{k-1/2}}{\delta z_{k+1/2} \rho_k \delta z_k} w_{k-1/2}^{(\kappa+1)} - \left[\frac{\mu}{\delta t} + \frac{1}{A_i} \sum_{i'} \frac{l_{i;i+i'}}{L_{i;i+i'}} + \frac{\rho_{k+1/2}}{\delta z_{k+1/2}} \left(\frac{1}{\rho_{k+1} \delta z_{k+1}} + \frac{1}{\rho_k \delta z_k} \right) \right] w_{i,k+1/2}^{(\kappa+1)} + \frac{\rho_{k+3/2}}{\delta z_{k+1/2} \rho_{k+1} \delta z_{k+1}} w_{k+3/2}^{(\kappa+1)} = rhs_{i,k+1/2} - \frac{\mu}{\delta t} w_{i,k+1/2}^{(\kappa)} - \frac{1}{A_i} \sum_{i'} \frac{l_{i;i+i'}}{L_{i;i+i'}} w_{i+i',k+1/2}^{(\kappa)}$$

3D Poisson equation solver

A simple analytic test function:

$$w(\lambda,\varphi,z) = w_1(\lambda,\varphi)w_2(z)$$

where

$$w_1(\lambda,\varphi) = \sin 3\lambda \cos^4 \varphi$$

 $w_2(z) = \sin^8 \left(\pi \frac{z}{z_{\max}}\right)$

- 40962 cells -- 40 vertical layers
- Note that this problem is very tightly coupled in the vertical.
- The inf-norm error looks like this:

Advection based on cell corners and edges

- Recall that advection of quantities defined at cell centers uses hexagons and pentagons as control volumes.
- Suppose the grid contains *N* cells:
 - I2 pentagons
 - ► N-12 hexagons
- In the VVM advected quantities will also be defined at cell corners and edges.

Control volumes for the corner grid

This is the dual of the hexagon/pentagon grid.

 \clubsuit Suppose the grid contains N cells.

It is easy to show 2 (N-2) corners

Control volumes for the edge grid

* Each grid point is associated with an edge of the icosahedral grid.

 \clubsuit Suppose the grid contains N cells.

It is easy to show 3 (N-2) edges.

This is more difficult than the corner grid and more important to do well.

The 3rd-order (upstream-biased) advection

Based on Hsu and Arakawa (1990)

$$\frac{\partial m}{\partial t} + \frac{1}{A} \sum_{i=1}^{N} F_i = 0$$

The incoming and outgoing fluxes depend on the direction of the wind.

$$F_i = F_i^+ + F_i^-$$

Suppose the wind directed from p_0 toward p_1 , then, for example

$$F_1^+ \equiv F_1^+ \left(m_{up}, m_0, m_1, \mathbf{v}_{up}, \mathbf{v}_1 \right) \text{ and } F_1^- \equiv 0$$

where F_1^+ depends on the curvature of the upstream field. The scheme can be positive-definite or not.

Pure Advection Test

♦ Williamson et al. (1992)

$$h(\lambda,\varphi) = \begin{cases} (h_0/2)(1+\cos(\pi r/R)) & r < R \\ 0 & r \ge R \end{cases}$$

where $h_0 = 1000 \text{ m and } R = a/3$

✤ The wind is prescribed:

$$u = u_0 \left(\cos \varphi \cos \alpha + \sin \varphi \cos \lambda \sin \alpha \right)$$

$$v = -u_0 \sin \lambda \sin \alpha$$

The value of å is selected to advect along a great circle path over four pentagons.

normalized RMS and inf-norm errors

