Verification of Various formulations of Coupling Using a 3D MMF (ongoing work)

- Construct a 3D MMF in which a 3D CRM is coupled with an idealized GCM.
- Compare the results of 3D MMF with those of the straightforward application of the 3D CRM.

Vector Vorticity Cloud Model (VVCM)

- A Three-Dimensional Anelastic Model Based on the Vorticity Equation Joon-Hee Jung and Akio Arakawa, 2008, *Mon. Wea. Rev.*, **136**, 276-294.
- Nonhydrostatic anelastic 3D model
- Prognostic variables:
 - Horizontal components of vorticity
 - Vertical component of vorticity (at a certain height)
 - Horizontally uniform part of horizontal velocity (at a certain height)
 - Potential temperature
 - Mixing ratios of various phases of water
- 3D elliptic (or parabolic) equation is solved for vertical velocity
- Physics:
 - Bulk ice-phase microphysical parameterization
 - Radiation parameterization
 - Turbulence parameterization (Ist-order closure)

Benchmark Simulation with VVCM

- Domain size: 384 km x 384 km x 18 km
- Horizontal resolution: 3 km
- Vertical resolution: 34 layers with a stretched vertical grid
- Lower boundary: ocean surface with a fixed temperature
- Idealized tropical condition: based on a GATE Phase-III mean sounding and a wind profile during TOGA COARE
- Large-scale forcing: prescribed cooling and moistening tendencies
- Perturbation: random temperature perturbations into the lowest layer

Approach A: Explicit formulation of GCM/CRM effects **Approach B:** Mutual adjustments of prognostic variables **Approach C:** Hybrid of A and B

- Approach A includes an ad hoc way of eliminating the double counting.
- Horizontal resolution of GCM: 96 km

EXPERIMENTS I AND 2

• For thermodynamic variables

Approach A

$$\frac{\partial q_C}{\partial t} = S_C + \hat{S}_G$$
$$\frac{\partial q_G}{\partial t} = S_G + \langle S_C \rangle$$

For vorticity components

 $\left< S_{C} \right>^{*}$ includes only the tendency due to turbulence and surface flux.

Relative Error of a 3D-MMF Simulation (EXP I)

Mass-Weighted Vertion of thermodynamic va	cal mean riables	Mass-weighted vertical mea of variances			
Gross RH*	I %	3'3	-57 %		
Cloud liquid water	17 %	$\eta'\eta'$	-57 %		
Cloud ice	5 %	<i>٤'٤'</i>	-59 %		
		u'u'	-33 %		
Surface precipitation	-2 %	v ′ v ′	-57 %		
Surface fluxes		w'w'	-24 %		
Evaporation	-29 %				
Sensible heat	-25 %				

(EXP I) **Domain-Time Averaged Vertical Profiles of Errors** — moist static energy 18 sensible heat latent heat 15 HEIGHT (km) 6 6 3 0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 (K)

The underestimation of the surface fluxes is the cause for this, not the result.

Relative Error of a 3D-MMF Simulation (EXP I)

Mass-Weighted Vertical mean of thermodynamic variables		Mass-weighted vertical mean of variances		
Gross RH*	%	<i>ٚ</i> ڿٚٛٚڿ	-57 %	
Cloud liquid water	17 %	$\eta'\eta'$	-57 %	
Cloud ice	5 %	ζ'ζ'	-59 %	
Surface precipitation	-2 %	u'u' v'v' w'w'	-33 % -57 % -24 %	
Surface fluxes				

Evaporation Sensible heat -29 %

Errors are quantitative rather than qualitative.

Relative Error of a 3D-MMF Simulation (EXP 2 and 2a)

Mass-Weighted Vertical mean Mass-weighted vertical mean of thermodynamic variables of variances

EX	P: 2		2	a	EXP	2: 2	2 a
Gross RH *	0	%	0	%	٤'٤'	-71%	-70 %
Cloud liquid wate	r -22	%	-22	%	η'η'	-68 %	-67 %
Cloud ice	2	%	3	%	٤'٤'	-21 %	-20 %
Surface precip.	-4	%	-4	%	u'u' v'v'	-63 % -67 %	-62 % -66 %
Surface fluxes					w'w'	15 %	14 %

Evaporation

Sensible heat

-67 % -66 % -66 % -65 %

(EXP 2)

Domain-Time Averaged Vertical Profiles of Errors

Again, the underestimation of the surface fluxes is the cause for this.

EXP2a is practically the same.

EXPERIMENT 3

For both thermodynamic variables and vorticity components

Approach B

$$\begin{cases} \frac{\partial q_C}{\partial t} = S_C - \frac{1}{\tau_C} (q_C - \hat{q}_G) \\ \frac{\partial q_G}{\partial t} = S_G - \frac{1}{\tau_G} (q_G - \langle q_C \rangle) \end{cases}$$

 au_C : time scale for the response of convection to large-scale forcing au_G : time scale for the adjustment of the large-scale fields by convection

Ambiguities in formulating forcing and feedback do not exist.

Since q_c tends to be adjusted to \hat{q}_G , q_c may be excessively damped.

Relative Error of a 3D-MMF Simulation (EXP 3)

Variance of w

	t _c = 0.5 hr	$\mathbf{t}_{\mathbf{c}} = \mathbf{I} \mathbf{h} \mathbf{r}$	t _c =2 hr	t _c = 4 hr
t _G = 0.5 hr	-59 %	-72 %	-81 %	-86 %
t _G = I hr	-22 %	-52 %	-70 %	-78 %
t _G = 2 hr	42 %	-11%	-47 %	-64 %
$\mathbf{t}_{\mathbf{G}} = 4 \ \mathbf{hr}$	141 %	48 %	-12 %	-46 %

Convective activity is sensitive to the choice of the time scales.

Over-prediction when $\tau_G = \tau_C$ **Under-prediction** when $\tau_G \leq \tau_C$

Relative Error of a 3D-MMF Simulation (EXP 3)

Mass-Weighted Vertical mean Mass-weighted vertical mean of thermodynamic variables of variances

τ	' <mark>: 0.5</mark> hr	' 4 hr	τ:	0.5 hr	4 hr
Gross RH*	II %	12 %	<i>چ</i> 'ځ'	-83 %	-76 %
Cloud liquid wat	er 1%	-22 %	η'η'	-85 %	-78 %
Cloud ice	-13 %	-25 %	ζ'ζ'	-75 %	-80 %
Surface precip.	-40 %	-43 %	u'u' v'v'	-3 % -67 %	-73 % -77 %
Surface fluxes			w'w'	-59 %	-46 %

 Evaporation
 -36 %
 -12 %

 Sensible heat
 -26 %
 -10 %

EXPERIMENT 4

Approach C

For thermodynamic variables

$$\begin{aligned} \int \frac{\partial q_C}{\partial t} &= S_C + \hat{S}_G \\ \frac{\partial q_G}{\partial t} &= \left\langle \hat{S}_G \right\rangle + \left\langle S_C \right\rangle - \frac{1}{\tau_T} \left(q_G - \left\langle q_C \right\rangle \right) \end{aligned}$$

For vorticity components

$$\begin{cases} \frac{\partial q_C}{\partial t} = S_C + \hat{S}_G \\ \frac{\partial q_G}{\partial t} = \left\langle \hat{S}_G \right\rangle + \left\langle S_C \right\rangle - \frac{1}{\tau_V} \left(q_G - \left\langle q_C \right\rangle \right) \end{cases}$$

Relative Error of a 3D-MMF Simulation (EXP 4) $\tau_v = I hr$

Mass-Weighted Vertical mean Mass-weighted vertical mean of thermodynamic variables of variances

	$ au_{ ext{t}}$: 0 hr	2	hr	${oldsymbol au}_{ extsf{T}}$:0 hr	2 ł	nr
Gross RH	0 %	0	%	ځ'ځ	-71 %	-72	%
Cloud liquid wa	ter -22 %	-22	%	η'η'	-68 %	-69	%
Cloud ice	2 %	I	%	ζζ	-19 %	-20	%
Surface precip.	-4 %	-5	%	u'u' v'v'	-63 % -67 %	-63 -67	% %
Surface fluxes				w'w'	14 %	14	%
Evaporation Sensible heat	-67 % -66 %	-67 -66	% %				

Summary and Conclusion

- Errors of the MMF are sensitive to formulation of the coupling.
- The variances of horizontal winds are under-predicted in all experiments.
- Consequently, the surface heat fluxes are under-predicted. The low-level temperature and humidity tend to be low.
- Finding a proper way of the coupling should be one of the central problems in MMF development. This is especially true for horizontal momentum and cloud-microphysical variables.

Revised Approach B (to be tested)

Predictor Step:

$$\begin{cases} \frac{q_{G}^{*} - q_{G}^{n}}{\Delta t} = S_{G} + \langle P_{C} \rangle \\ \frac{q_{C}^{*} - q_{C}^{n}}{\Delta t} = S_{C} + \hat{P}_{G} \end{cases}$$

P represents sources/sinks due to physics.

Adjustment Step:
$$\begin{cases} \frac{q_{G}^{n+1} - q_{G}^{*}}{\Delta t} = -\frac{1}{\tau} \left(q_{G} - \left\langle q_{C} \right\rangle \right) \\ \frac{q_{C}^{n+1} - q_{C}^{*}}{\Delta t} = -\frac{1}{\tau} \left(\left\langle q_{C} \right\rangle - \left\langle \hat{q}_{G} \right\rangle \right) \end{cases}$$

- Implementation of the source/sink terms and mutual adjustment are performed sequentially.
- No local damping of q_c .
- Sources/sinks due to physics are compatible between the GCM and CRM.