Impact of cloud microphysics on stratiform precipitation associated with squall lines

Hugh Morrison and Greg Thompson

National Center for Atmospheric Research

Shallow and Deep Convection Breakout, CMMAP Meeting, Jan 16

Motivation

- Poor simulation of general squall line structure, i.e., leading edge convection and trailing stratiform precipitation (e.g., Tao et al. 2007)
- Impact of stratiform precip on latent heating, cold pool formation, propagation speed, convective intensity, etc.

Experimental Design

- Idealized 7 hr 2D squall line simulations using WRF (dx = 1 km), Weisman-Klemp sounding, moderate ambient low-level wind shear
- Focus is impact of 1-moment versus 2moment microphysics for rain, snow, graupel (i.e., prediction of N and q for rain, snow, graupel, vs. only q)

 Much more widespread trailing stratiform region using two-moment scheme

Rain rate

- What is the main cause of this difference?
- Rain microphysics is the key!

- In both schemes, rain size distribution is treated by: $N(D) = N_0 D^{\mu} e^{-\lambda D}$
- In one-moment scheme, N₀ rain is fixed at 10⁷ m⁻⁴.
- In two-moment scheme, N₀ freely evolves with predicted N and q.

- Predicting rain q and N in two-moment scheme has two major impacts relative to the one-moment scheme:
- I. Smaller N_0 , larger mean drop size in stratiform region \rightarrow reduced evaporation.
- II. Larger N₀, smaller mean drop size in convective region → increased evaporation, reduced updraft intensity, increased detrainment of buoyancy at mid-levels, stronger mesoscale updraft in stratiform region, faster ice growth rates

 Is this difference in modeled rain N₀ between stratiform and convective regions observed? Yes!

 Key point is that no single value of constant N₀ in the one-moment scheme can reproduce results of two-moment scheme.

Next Steps

- Simulation of real 3D squall line cases, comparison with obs and bin model as part of WMO Cloud Modeling Workshop intercomparison
- Impact of new ice microphysics (implement Morrison and Grabowski, 2008)