Progress in the development of a zonal channel
version of the vector vorticity model

Hiroaki Miura (CSU)

Thanks to David Randall, Akio Arakawa, Celal Konor,
Joon-Hee Jung, and Ross Heikes

* Motivation
* A parallel Poisson solver
 Current configuration of the model
* Test results

 Cold bubble experiment

* Held-Suarez-like test

e Summary




Motivation

regional

Jung and Arakawa (2008)

* A new CRM using the vorticity equation (VVM)

 Cyclic conditions in X and Y
* Not parallelized

Celal and MingXuan’s model
» Upgrading the original model
 Cyclic conditions in X and Y

* Parallelized (FFT)

My work
« Zonal channel (Cyclic in X, walls in Y)
* Parallelized (Multigrid)

VVM on the spherical geodesic grid (future)

» Celal is working on a hexagonal VVM

* Ross is working on the Multigrid method




Elow for updating dynamical variables

Predict vorticity and scalars
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Parallel Poisson solvers

From a lecture of Dr. H. S. Simon
http://www.cs.berkeley.edu/~demmel/cs267 Spr05/Lectures/Lecture25/Lecture_25 UnstructuredMultigrid_jd2005_v3.ppt

Algorithms for 2D Poisson Equation (N vars)

Algorithm Serial PRAM Memory
Dense LU N3 \ N2
Band LU N2 N N3/2

Jacobi
\\

Explicit Inv. N log N

Conj.Grad. N 3/2 N 2*log N
RB SOR N 3/2 N 172
Sparse LU N 372 N 172

FFT N*log N log N
Multigrid \ log® N
Lower bound N log N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.




Why multigrid?.

A first parallelization policy

FFT can be faster even on parallel computers.

« Celal and MingXuan’s model is testing a FFT solver. [IiEas

* Other examples using FFT. SAM, meso-NH lm

2D decomposition

From a presentation of Dr. L. Giraud
http://www.cerfacs.fr/~giraud/Talks/parCfd.pps

Merits of the multigrid method

* It is easier to code.

* Its computation is local.
» We can code it using MPI_(1)SEND and MPI1_()RECV only.
» This may be desirable for large number of processors.

» We can use the same method on the spherical geodesic grid.
» Heikes and Randall (1995)




A Poisson solver: Jacobi method

1D Poisson equation
x>

Jacobi method: REMErANaEs

i+l

An optimum parameter:

w=4/5 = a=25




Test of 3D Poisson solvers

nx=ny=nz=32

dx=dy=dz=1.0

x, =y, =z, =16.0

r=[Ge-x)s5.0] +[(r-».)5.0] +[z-z )10]
e {cos%z/Z*«/?)forr <1.0

0 forr>1.0

Method:
1. With a given w, compute x- and y-components of vorticity.
2. Then, reconstruct w by solving the 3D Poisson equation.

W (ogw)| == L2402
ax dy

w = 0 at the top and bottom boundaries




Horizontal: Jacobi, Vertical: Implicit
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Horizontal: w-Jacobi; Vertical: Implicit
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Multigrid'method

Poisson equation to be solved

correction
residual

If “correction” is estimated from residual, we can update an approximation of w.

In the multigrid method, “correction” is estimated by solving a Poisson
equation on a coarser grid to adjust larger-scale efficiently.

MREEd] A Poisson solver is a “smoother.”
‘\ /,’\ /,‘\ /,‘ “\ Restriction (fine to coarse):
d o ® /1 Prolongation (coarse to fine):

A Poisson solver is a solver.

o
@ @
/ \ ® " A solution is obtained by repeating “V-cycle.”
® O ® O
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Horizontal: Multigrid + Jacobi; Vertical: Implicit

Convergence of residual

—e— Jacobi
- Jacobi a=2.5
-+ %+~ Multigrid w/ Jacobi

Convergence is even slower
than the Jacobi method.
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What happened?.

Change in error
V-cycle = 125, , 375,

Vertical Error (y=16, z=16) Horizontal
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A vertical mode, which is friendly with horizontal 2-grid noise, is allowed in the system.

If the Jacobi method is applied vertically instead of the implicit form used, the vertical

mode can be eliminated. But, vertical 2-grid noise appears in addition to horizontal one.




Horizontal: Multigrid + w-Jacobi, Vertical: Implicit

Convergence of residual ..

" —e— Jacobi
» Jacobi a=2.5

V-cycle=1

V-cycle=3
Convergence is much faster than the others.

10~20 V-cycles (40~80 iterations on the finest grid)
are sufficient to achieve convergence.

V-cycle=20




North and south boundaries

Different algorithms are used for Dirichlet and Neumann boundary conditions
in restriction and prolongation .

Dirichlet condition

North wall

finest grid @)

. : 2
coarser grids F=0inVw=F
at the boundaries

Neumann conditions

South wall

finest grid @) O

® V2
E)llt =En lnv W=F
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Current configuration

* Parallelized using MPI (domain decomposition in X and Y)
* Boundaries
* free-slip rigid walls in Z
* Cyclic or free-slip rigid walls in X, Y
* Dynamics
« Governing equations: an anelastic system (Jung and Arakawa, 2008)
« Spatial discretization
* Following an updated version of Jung and Arakawa (2005)
» Arakawa C-grid
* Lorenz grid in vertical
« 2"d-order centered schemes except for advection
« 3rd-order upwind biased advection
* slope limiter for TVD (optional): min-mod limiter
* flux limiter for monotonicity: N/A
« 3D and 2D Poisson solvers
2D Multigrid using w-Jacobi or Red-Black solver
» Temporal discretization
« 3rd-order or 2"9-order Runge-Kutta scheme
* Physics
* N/A




Cold bubble experiment

Settings following Straka et al. (1993)

No explicit diffusions here
dx(=dy)=dz=100 m
dt=1s

nx= 256 x 2 (processes)

nz = 60
np = 2

grid size=25m
grid size=50 m
grid size=100 m

grid size =200 m

size =400 m

Difference may be attributed to
the lack of the explicit diffusion.




Dependence on V-cycle

dx(=dy)=dz=400 m
dt=4s

nx= 64 x 2 (processes)
nz=15

np = 2

V-cycle=7~8 (_convergence was achieved)

gridsize=25m

grid size=100m

grid size =200 m

_ (@

grid size =400 m

AN
(@GN

m

Fig. 3 of Jung and Arakawa (2008)

We can obtain a similar result even if convergence of
the Poisson solver is insufficient.




Held-Suarez(-like) test

Following Held and Suarez (1994), but the forcing terms are modified to be a
function of z because pressure is not diagnosed in my model currently.

Equatorial beta plane was assumed.

dx=dy= 200 km

dz= 500 m

dt =600 s

nx= 16 x 2 (processes)

ny= 16 x 2 (processes)

nz = 60 Dy il

np = 4 Zonal mean zonal wind Potential temperature and winds
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Summary.

A dry version of a zonal channel VVM is working.
The model is parallelized using MPI.
A multigrid Poisson solver was developed.
Evolution of a cold bubble was simulated reasonably.

In a Held-Suarez-like test, at least for a 30 day integration, a jet
was generated around 20S and 20N with maximum strength of
about 20 m/s. But, easterly winds were unrealistically strong
near the north and south boundaries.

Future issues

« “Opening” the south and north walls for a realistic flow
Following a document by Prof. Arakawa

Chaney-Phillips grid

Flux limiter

Efficiency of the multigrid solver
Physical parameterizations




