Progress in the development of a zonal channel version of the vector vorticity model

Hiroaki Miura (CSU)

Thanks to David Randall, Akio Arakawa, Celal Konor, **Joon-Hee Jung, and Ross Heikes**

- Motivation
- A parallel Poisson solver
- Current configuration of the model
- Test results
	- Cold bubble experiment
	- Held-Suarez-like test
- Summary

Motivation

regional

Jung and Arakawa (2008)

- A new CRM using the vorticity equation (VVM)
- Cyclic conditions in X and Y
- Not parallelized

Celal and MingXuan's model

- Upgrading the original model
- Cyclic conditions in X and Y
- Parallelized (FFT)

My work

- Zonal channel (Cyclic in X, walls in Y)
- Parallelized (Multigrid)

VVM on the spherical geodesic grid (future)

- Celal is working on a hexagonal VVM
- Ross is working on the Multigrid method

global

Flow for updating dynamical variables

One 3D and two 2D Poisson

equations need to be solved.

Jung and Arakawa (2008) Predict vorticity and scalars

$$
\frac{\partial \xi}{\partial t} = -\left[\frac{\partial}{\partial x}(u\xi) + \frac{\partial}{\partial y}(v\xi) + \frac{\partial}{\partial z}(w\xi)\right] + \xi \frac{\partial u}{\partial x} + \eta \frac{\partial u}{\partial y} + \xi \frac{\partial u}{\partial z} + \eta \frac{\partial u}{\partial z} + \frac{\partial B}{\partial y} + \frac{\partial F_w}{\partial y} - \frac{\partial F_v}{\partial z}
$$
\n
$$
\frac{\partial \eta}{\partial t} = -\left[\frac{\partial}{\partial x}(u\eta) + \frac{\partial}{\partial y}(v\eta) + \frac{\partial}{\partial z}(w\eta)\right] + \xi \frac{\partial v}{\partial x} + \eta \frac{\partial v}{\partial y} + \xi \frac{\partial v}{\partial z} + \eta \frac{\partial v}{\partial z} - \frac{\partial B}{\partial x} + \frac{\partial F_w}{\partial z} - \frac{\partial F_w}{\partial x}
$$
\n
$$
\frac{\partial \xi}{\partial t} = -\left[\frac{\partial}{\partial x}(u\xi) + \frac{\partial}{\partial y}(v\xi) + \frac{\partial}{\partial z}(w\xi)\right] + \xi \frac{\partial w}{\partial x} + \eta \frac{\partial w}{\partial y} + \xi \frac{\partial w}{\partial z} - f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + \frac{\partial F_w}{\partial x} - \frac{\partial F_w}{\partial y}
$$
\n
$$
\xi_x = -\int_{z_r}^{z_r} \left[\frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y}\right] dz + \xi_r
$$
\n
$$
\frac{\partial \theta}{\partial t} = -\frac{1}{\rho_0} \left[\frac{\partial}{\partial x}(\rho_0 u\theta) + \frac{\partial}{\partial y}(\rho_0 v\theta) + \frac{\partial}{\partial z}(\rho_0 w\theta)\right] + \left(\frac{\partial \theta}{\partial t}\right)_{\rho h \circ x}
$$
\n
$$
\frac{\partial q_x}{\partial t} = -\frac{1}{\rho_0} \left[\frac{\partial}{\partial x}(\rho_0 u q_x) + \frac{\partial}{\partial y}(\rho_0 v q_x) + \frac{\partial}{\partial z}(\rho_0 w q_x)\right] + \left(\frac{\partial q_x}{\partial t}\right)_{\rho h \circ x}
$$
\n
$$
u = u_y + u_x, v = v_y + v_x
$$

Parallel Poisson solvers

From a lecture of Dr. H. S. Simon

http://www.cs.berkeley.edu/~demmel/cs267_Spr05/Lectures/Lecture25/Lecture_25_UnstructuredMultigrid_jd2005_v3.ppt

Algorithms for 2D Poisson Equation (N vars)

PRAM is an idealized parallel model with zero cost communication Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

Why multigrid?

FFT can be faster even on parallel computers.

- Celal and MingXuan's model is testing a FFT solver.
- Other examples using FFT: SAM, meso-NH

A first parallelization policy x-slices · "X-Y variant"

From a presentation of Dr. L. Giraud http://www.cerfacs.fr/~giraud/Talks/parCfd.pps

y-slices

2D decomposition

Merits of the multigrid method

- It is easier to code.
- Its computation is local.
	- We can code it using MPI_(I)SEND and MPI_(I)RECV only.
	- This may be desirable for large number of processors.
- We can use the same method on the spherical geodesic grid.
	- Heikes and Randall (1995)

A Poisson solver: Jacobi method

1D Poisson equation $\frac{\partial^2 w}{\partial x^2} = F$

Jacobi method:
$$
\frac{w_{i-1}^{\tau} - 2w_i^{\tau+1} + w_{i+1}^{\tau}}{\Delta x^2} = F_i
$$

$$
w_i^{\tau+1} = \frac{1}{2} \left(w_{i-1}^{\tau} + w_{i+1}^{\tau} - F_i \Delta x^2 \right)
$$

ω-Jacobi method:

$$
\frac{w_{i-1}^{\tau} - \alpha w_i^{\tau+1} + (2 - \alpha)w_i^{\tau} + w_{i+1}^{\tau}}{\Delta x^2} = F_i
$$
\n
$$
w_i^{\tau+1} = w_i^{\tau} + \frac{2}{\alpha} \left[\frac{1}{2} \left(w_{i-1}^{\tau} + w_{i+1}^{\tau} - F_i \Delta x^2 \right) - w_i^{\tau} \right]
$$
\n
$$
\widetilde{w}_i = \frac{1}{2} \left(w_{i-1}^{\tau} + w_{i+1}^{\tau} - F_i \Delta x^2 \right)
$$
\n
$$
w_i = 2/\alpha
$$

$$
w - 2/\alpha
$$

$$
w_i^{\tau+1} = w_i^{\tau} + \omega(\widetilde{w}_i - w_i^{\tau})
$$

An optimum parameter: $\omega = 4/5 \rightarrow \alpha = 2.5$

$$
\alpha = 4.0
$$

$$
\frac{w_{i-1}^{\tau} + 2w_i^{\tau} + w_{i+1}^{\tau} - 4w_i^{\tau+1}}{\Delta x^2} = 0
$$

$$
w_i^{\tau+1} = 0
$$

Test of 3D Poisson solvers

nx=ny=nz=32 dx=dy=dz=1.0

Method:

- 1. With a given w, compute x- and y-components of vorticity.
- 2. Then, reconstruct w by solving the 3D Poisson equation.

$$
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) w + \frac{\partial}{\partial z} \left[\frac{1}{\rho_0} \frac{\partial}{\partial z} (\rho_0 w)\right] = -\frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y}
$$

$$
w = 0
$$
 at the top and bottom boundaries

Horizontal: Jacobi, Vertical: Implicit

-30

27

24

21

18

15

 12

 β

 $\mathbf{0}$

Horizontal: w-Jacobi, Vertical: Implicit $\frac{\rho_{k+l/2} w_{i-l,j,k+l/2}^{\tau} - \alpha \rho_{k+l/2} w_{i,j,k+l/2}^{\tau+l} - (2-\alpha) \rho_{k+l/2} w_{i,j,k+l/2}^{\tau} + \rho_{k+l/2} w_{i+l,j,k+l/2}^{\tau}}{\Delta x^2}$ $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\rho_0 w) + \rho_0 \frac{\partial}{\partial z} \left[\frac{1}{\rho_0} \frac{\partial}{\partial z} (\rho_0 w)\right] = \rho_0 F$ $+\frac{\rho_{k+l/2} w_{i,j-l,k+l/2}^{\tau}-\alpha \rho_{k+l/2} w_{i,j,k+l/2}^{\tau+l}-\left(2-\alpha \right)\rho_{k+l/2} w_{i,j,k+l/2}^{\tau}+\rho_{k+l/2} w_{i,j+l,k+l/2}^{\tau}}{ \Delta x^2}$ $\left. + \rho_{\scriptscriptstyle k+1/2}\frac{1}{\Delta z_{\scriptscriptstyle k+1/2}} \left[\frac{\rho_{\scriptscriptstyle k+3/2} w_{\scriptscriptstyle i,j,\scriptscriptstyle k+3/2}^{\tau+1} - \rho_{\scriptscriptstyle k+1/2} w_{\scriptscriptstyle i,j,\scriptscriptstyle k+1/2}^{\tau+1}}{\rho_{\scriptscriptstyle k+1}\Delta z_{\scriptscriptstyle k+1}} - \frac{\rho_{\scriptscriptstyle k+1/2} w_{\scriptscriptstyle i,j,\scriptscriptstyle k+1/2}^{\tau+1} - \rho_{\scriptscriptstyle k-1/2} w_{\scriptscriptstyle i,j,\scriptscriptstyle k-1/2}^{\tau+1}}{\rho_{\script$ $A_{k+1/2} \rho_{k-1/2} w_{i,j,k-1/2}^{r+1} + B_{k+1/2} \rho_{k+1/2} w_{i,j,k+1/2}^{r+1} + C_{k+1/2} \rho_{k+3/2} w_{i,j,k+3/2}^{r+1} = D_{i,j,k+1/2}^{r+1}$ $A_{k+1/2} = \frac{1}{\rho_{k} \Delta z_{k}} \frac{\rho_{k+1/2}}{\Delta z_{k+1/2}}$ $B_{k+1/2} = -\alpha \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} \right) - \left(A_{k+1/2} + C_{k+1/2} \right)$ $C_{k+1/2} = \frac{1}{\rho_{k+1} \Delta z_{k+1}} \frac{\rho_{k+1/2}}{\Delta z_{k+1/2}}$ $\boxed{D^\tau_{i,j,k+1/2}=\rho_{k+1/2}F_{i,j,k+1/2}-\left[\frac{\rho_{k+1/2}w^\tau_{i-1,j,k+1/2}+\left(2-\alpha\right)\!\rho_{k+1/2}w^\tau_{i,j,k+1/2}+\rho_{k+1/2}w^\tau_{i+1,j,k+1/2}}{\Delta x^2}+\frac{\rho_{k+1/2}w^\tau_{i,j-1,k+1/2}+\left(2-\alpha\right)\!\rho_{k+1/2}w^\tau_{i,j,k+1/2}+\rho_{k+1/2}w^\tau_{i,j+1,k+1/2}}{\Delta y^2}\right]}$

Multigrid method

 $\nabla_0^2 w_0 = F_0$ \leftarrow Poisson equation to be solved $e_0 = w_0 - \widetilde{w}_0^{\tau}$ \leftarrow correction $r_0 = \nabla_0^2 \widetilde{w}_0^T - F_0$ \longleftarrow residual

If "correction" is estimated from residual, we can update an approximation of w.

$$
\nabla_0^2 e_0 = \nabla_0^2 w_0 - \nabla_0^2 \widetilde{w}_0^{\tau}
$$

= $F_0 - \nabla_0^2 \widetilde{w}_0^{\tau}$
= $-r_0$

In the multigrid method, "correction" is estimated by solving a Poisson equation on a coarser grid to adjust larger-scale efficiently.

Horizontal: Multigrid + Jacobi, Vertical: Implicit

Convergence of residual

Convergence is even slower than the Jacobi method.

Solution and error after 250 V-cycles (1004 iterations on the finest grid)

What happened?

Change in error

V-cycle = 125, 250, 375, 500

A vertical mode, which is friendly with horizontal 2-grid noise, is allowed in the system.

If the Jacobi method is applied vertically instead of the implicit form used, the vertical mode can be eliminated. But, vertical 2-grid noise appears in addition to horizontal one.

Horizontal: Multigrid + w-Jacobi, Vertical: Implicit

V-cycle=1

Solution

V-cycle=3

Convergence is much faster than the others. 10~20 V-cycles (40~80 iterations on the finest grid)

are sufficient to achieve convergence.

 21

North and south boundaries

Different algorithms are used for Dirichlet and Neumann boundary conditions in restriction and prolongation .

Current configuration

- Parallelized using MPI (domain decomposition in X and Y)
- Boundaries
	- free-slip rigid walls in Z
	- Cyclic or free-slip rigid walls in X, Y
- Dynamics
	- Governing equations: an anelastic system (Jung and Arakawa, 2008)
	- Spatial discretization
		- Following an updated version of Jung and Arakawa (2005)
			- Arakawa C-grid
			- Lorenz grid in vertical
			- 2nd-order centered schemes except for advection
			- 3rd-order upwind biased advection
		- slope limiter for TVD (optional): min-mod limiter
		- flux limiter for monotonicity: N/A
		- 3D and 2D Poisson solvers
			- 2D Multigrid using ω-Jacobi or Red-Black solver
	- Temporal discretization
		- 3rd-order or 2nd-order Runge-Kutta scheme
- Physics
	- N/A

Cold bubble experiment

Settings following Straka et al. (1993) No explicit diffusions here

dx(=dy)=dz=100 m $dt = 1 s$ nx= 256 x 2 (processes) $nz = 60$ $np = 2$

t=300 s Z [km] -6 5 $\overline{3}$ $\overline{2}$ 14 10 12 16 18 $20[°]$ \mathcal{R} X [km]

t=600 s

t=900 s

Difference may be attributed to the lack of the explicit diffusion.

Dependence on V-cycle

Fig. 3 of Jung and Arakawa (2008) We can obtain a similar result even if convergence of the Poisson solver is insufficient.

Held-Suarez(-like) test

Following Held and Suarez (1994), but the forcing terms are modified to be a function of z because pressure is not diagnosed in my model currently. Equatorial beta plane was assumed.

Summary

• **A dry version of a zonal channel VVM is working.**

- **The model is parallelized using MPI.**
- **A multigrid Poisson solver was developed.**
- **Evolution of a cold bubble was simulated reasonably.**
- **In a Held-Suarez-like test, at least for a 30 day integration, a jet was generated around 20S and 20N with maximum strength of about 20 m/s. But, easterly winds were unrealistically strong near the north and south boundaries.**

• **Future issues**

- **"Opening" the south and north walls for a realistic flow**
	- **Following a document by Prof. Arakawa**
- **Chaney-Phillips grid**
- **Flux limiter**
- **Efficiency of the multigrid solver**
- **Physical parameterizations**