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Jung and Arakawa (2008)
•  A new CRM using the vorticity equation (VVM) 
•  Cyclic conditions in X and Y 
•  Not parallelized

regional

global

Celal and MingXuan’s model
•  Upgrading the original model 
•  Cyclic conditions in X and Y 
•  Parallelized (FFT)

•  Celal is working on a hexagonal VVM 
•  Ross is working on the Multigrid method

VVM on the spherical geodesic grid (future)

My work 
•  Zonal channel (Cyclic in X, walls in Y) 
•  Parallelized (Multigrid) 



Jung and Arakawa (2008) Predict vorticity and scalars

Diagnose velocity

One 3D and two 2D Poisson 
equations need to be solved. 



Algorithms for 2D Poisson Equation (N vars) 

Algorithm Serial  PRAM  Memory     #Procs
•  Dense LU N3  N  N2  N2
•  Band LU N2  N  N3/2  N
•  Jacobi  N2  N  N 

N
•  Explicit Inv. N  log N  N  N
•  Conj.Grad. N 3/2  N 1/2 *log N N  N
•  RB SOR N 3/2  N 1/2  N  N
•  Sparse LU N 3/2  N 1/2  N*log N  N
•  FFT  N*log N  log N  N  N
•  Multigrid N  log2 N  N  N
•  Lower bound N  log N  N

PRAM is an idealized parallel model with zero cost communication
Reference:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

From a lecture of Dr. H. S. Simon 
http://www.cs.berkeley.edu/~demmel/cs267_Spr05/Lectures/Lecture25/Lecture_25_UnstructuredMultigrid_jd2005_v3.ppt



From a presentation of Dr. L. Giraud 
http://www.cerfacs.fr/~giraud/Talks/parCfd.pps 

FFT can be faster even on parallel computers. 
•  Celal and MingXuan’s model is testing a FFT solver. 
•  Other examples using FFT: SAM, meso-NH

Merits of the multigrid method 
•  It is easier to code. 
•  Its computation is local. 

•  We can code it using MPI_(I)SEND and MPI_(I)RECV only. 
•  This may be desirable for large number of processors. 

•  We can use the same method on the spherical geodesic grid. 
•  Heikes and Randall (1995) 



1D Poisson equation

Jacobi method:

w(i-1) w(i) w(i+1)

t -1 1 -1

t+1 1 -1 1

w(i-1) w(i) w(i+1)

t -1 1 -1

t+1 0 0 0

ω-Jacobi method:

An optimum parameter:



nx=ny=nz=32 

dx=dy=dz=1.0 

Method: 
1.  With a given w, compute x- and y-components of vorticity. 
2.  Then, reconstruct w by solving the 3D Poisson equation. 



Solution and error after 1000 iterationsConvergence of residual



Solution and error after 1000 iterationsConvergence of residual



Restriction (fine to coarse):
Prolongation (coarse to fine):

Poisson equation to be solved
correction

residual

A Poisson solver is a “smoother.”

A Poisson solver is a solver.

If “correction” is estimated from residual, we can update an approximation of w.

In the multigrid method, “correction” is estimated by solving a Poisson 
equation on a coarser grid to adjust larger-scale efficiently.

A solution is obtained by repeating “V-cycle.”



Convergence is even slower 
than the Jacobi method.

Convergence of residual

Solution and error after 250 V-cycles 
(1004 iterations on the finest grid)



Change in error 
V-cycle = 125, 250, 375, 500 

Vertical Horizontal

A vertical mode, which is friendly with horizontal 2-grid noise, is allowed in the system. 

If the Jacobi method is applied vertically instead of the implicit form used, the vertical 
mode can be eliminated. But, vertical 2-grid noise appears in addition to horizontal one. 



Convergence of residual

Convergence is much faster than the others. 
10~20 V-cycles (40~80 iterations on the finest grid) 
are sufficient to achieve convergence.

V-cycle=1

V-cycle=3

Error V-cycle=20

Solution



South wall North wall

Dirichlet condition

finest grid

coarser grids

Neumann conditions

South wall North wall

finest grid

coarser grids

Different algorithms are used for Dirichlet and Neumann boundary conditions 
in restriction and prolongation .



•  Parallelized using MPI (domain decomposition in X and Y) 
•  Boundaries 

•  free-slip rigid walls in Z 
•  Cyclic or free-slip rigid walls in X, Y 

•  Dynamics 
•  Governing equations: an anelastic system (Jung and Arakawa, 2008) 
•  Spatial discretization 

•  Following an updated version of Jung and Arakawa (2005) 
•  Arakawa C-grid 
•  Lorenz grid in vertical 
•  2nd-order centered schemes except for advection 
•  3rd-order upwind biased advection 

•  slope limiter for TVD (optional): min-mod limiter 
•  flux limiter for monotonicity: N/A 
•  3D and 2D Poisson solvers 

•  2D Multigrid using ω-Jacobi or Red-Black solver 
•  Temporal discretization 

•  3rd-order or 2nd-order Runge-Kutta scheme 
•  Physics 

•  N/A



Settings following Straka et al. (1993) 

No explicit diffusions here

dx(=dy)=dz=100 m 
dt = 1 s 
nx= 256 x 2 (processes) 
nz = 60 
np = 2

Fig. 3 of Jung and Arakawa (2008)

t=300 s

t=600 s

t=900 s

Difference may be attributed to 
the lack of the explicit diffusion.



dx(=dy)=dz=400 m 
dt = 4 s 
nx= 64 x 2 (processes) 
nz = 15 
np = 2

V-cycle=7~8 ( convergence was achieved)

V-cycle=2 ( convergence was not achieved)

Fig. 3 of Jung and Arakawa (2008) We can obtain a similar result even if convergence of 
the Poisson solver is insufficient.



Following Held and Suarez (1994), but the forcing terms are modified to be a 
function of z because pressure is not diagnosed in my model currently. 
Equatorial beta plane was assumed.
dx=dy= 200 km 
dz= 500 m 
dt = 600 s 
nx= 16 x 2 (processes) 
ny= 16 x 2 (processes) 
nz = 60 
np = 4

Day 30 
Zonal mean zonal wind Potential temperature and winds



•  A dry version of a zonal channel VVM is working. 
•  The model is parallelized using MPI. 
•  A multigrid Poisson solver was developed. 
•  Evolution of a cold bubble was simulated reasonably. 
•  In a Held-Suarez-like test, at least for a 30 day integration, a jet 

was generated around 20S and 20N with maximum strength of 
about 20 m/s. But, easterly winds were unrealistically strong 
near the north and south boundaries. 

•  Future issues 
•  “Opening” the south and north walls for a realistic flow 

•  Following a document by Prof. Arakawa 
•  Chaney-Phillips grid 
•  Flux limiter 
•  Efficiency of the multigrid solver 
•  Physical parameterizations


