Update on MJO modeling activities with CAM3/RAS

Eric D. Maloney and Walter M. Hannah Colorado State University Department of Atmospheric Science January 2009 CMMAP Meeting

Outline

- Series of sensitivity tests with the CAM3.1 conventional GCM
- Building toward understanding why Tokioka et al (1988)-type modifications to convection schemes produce realistic MJOs
- Some work in progress, and some results from a recent paper: Maloney (2009)

Details of Experiments

- NCAR Community Atmosphere Model (CAM) Version 3.1, Relaxed Arakawa-Schubert (RAS) convection parameterization (with Tokioka-like minimum entrainment).
- Cloud members are defined by an entrainment parameter, with the lowest entrainment rates for the highest clouds
- We impose a series of minimum entrainment thresholds, below which cloud members are not allowed to exist (0, 0.2/2000, 0.4/2000, 0.6/2000 m⁻¹)
- We build towards understanding why the model produces a reasonable MJO with imposition of a minimum entrainment threshold

850 hPa Wind Spectra

- Intraseasonal variance monotonically increases as minimum entrainment parameter is increased
- Consistent with previous studies using Tokioka-like parameterization modifications

Variance Ratios

Figure 4. Ratios of boreal winter eastward to westward spectral power for wavenumbers 1-4 and 30-90 day periods.

Figure 5. Ratios of boreal winter model eastward spectral power to observed for wavenumbers 1-4 and 30-90 day periods.

Variance Ratios in Other Models

Composite 850 hPa Wind, Precip

 With exceptions of continued weaknesses in the Indian Ocean, composite winds and precipitation in the models with stronger minimum entrainment thresholds are most realistic

Observations (NCEP/CMAP)

Specific Humidity Composites

- Hypothesis is that higher minimum entrainment thresholds allow higher sensitivity of the scheme to free trop. humidity
- Results seems to bear out that lower tropospheric humidity accumulates in the scheme with higher thresholds

Models Typically Have a Difficult Time Capturing this Moisture Structure

Obs 200 200 P 400 +00 · 600 · 600 · 600 800 800 800 1000 1000 OLRA 0 --20 --20 -205 3 Å à 3 5 ź a) echam4_opyc 200 200 200 § 400 -400 400 e 600 600 600 · 800 800 800 1000 1000 1000 OLRA 0 0 -20 -20 -202 3 4 5 6 7 8 à -5 Ġ. ż ÷ - 3 à -5 à h) GEOS5 Lon. 80F Lon. 1308 200 200 200 § 400 400 400 600 600 600 800 800 800 1000 100 100 0 ULRA -20-20SNU Lon. 808 130E Lon. 220 200 200 200 ure 400 -400 400 se 600 600 600 800 800 800 1000 000 1000 8 0--20 -20 Ś 2 3 6 4 5 6 ò ż 5 SP-CAM SPCAM Lon. 80E Lon 30F Lon. 220E 200 200 200 § 400 400 . 10 se 600 -60 60 800 80 80 1000 1000 0 - U 0. -20 -20 - 5 5 Phase Phase Phase -0.5 -0.4 -0.3 -0.2 -0.1 -0.05 0.05 0.1 0.2 0.3 0.4 0.5 Unit : [g kg⁻¹]

Kim et al. 2009

Vertical Distribution of Horizontal Advection

Partitioning of Meridional Component of HADV

$$-\left(v\frac{\partial m}{\partial y}\right)_{ISO} \approx -\left(\overline{v}\frac{\partial m'}{\partial y}\right)_{ISO} - \left(v'\frac{\partial \overline{m}}{\partial y}\right)_{ISO} - \left(\left[v'\frac{\partial m'}{\partial y}\right]\right)_{ISO}\right)_{ISO}$$

a = 50-day avg. a' is the deviation from the 50-day avg.

Future Work

- Advanced diagnosis
 - Moisture versus temperature regulation of model entrainment rates
 - Evolution of cloud populations, convective mass flux, cloud work functions versus MJO phase
 - How convective suppression might regulate phase relationships between convection and thermodynamic fields and thus energetics (e.g. WISHE)
 - More general diagnosis of convection versus tropopsheric humidity and comparisons to SP-CAM
 - Aquaplanet

Aquaplanet Simulations

