Development of Global Cloud Resolving Model

Tests with 3D elliptic solver

Ross Heikes

Development of a 3D poisson solver

- Based on Arakawa, Jung and Konor
- ✦ The continuous equation

where (κ) denotes an iteration index.

Development of a 3D poisson solver

✦ Re-arrange to form an implicit tridiagonal system in the vertical

$$\frac{\rho_{k-1/2}}{\delta z_{k+1/2} \rho_k \delta z_k} w_{k-1/2}^{(\kappa+1)} - \left[\frac{1}{A_i} \sum_{i'} \frac{l_{i;i+i'}}{L_{i;i+i'}} + \frac{\rho_{k+1/2}}{\delta z_{k+1/2}} \left(\frac{1}{\rho_{k+1} \delta z_{k+1}} + \frac{1}{\rho_k \delta z_k} \right) \right] w_{i,k+1/2}^{(\kappa+1)} + \frac{\rho_{k+3/2}}{\delta z_{k+1/2} \rho_{k+1} \delta z_{k+1}} w_{k+3/2}^{(\kappa+1)}$$
$$= rhs_{i,k+1/2} - \frac{1}{A_i} \sum_{i'} \frac{l_{i;i+i'}}{L_{i;i+i'}} w_{i+i',k+1/2}^{(\kappa)}$$

- A straightforward modification of the relaxation operator within the 2D multigrid.
- With the current domain decomposition the entire vertical column is local information. Scaling results of the 2D solver will indicate the scaling of the 3D solver.

Convergence of 3D-multigrid -- analytic test 3

Solve the Poisson equation:

$$\nabla^2 w + \frac{\partial}{\partial z} \left[\frac{1}{\rho} \frac{\partial}{\partial z} (\rho w) \right] = rhs$$

 We can *make-up* an analytic test case and numerically differentiate to form *rhs*

$$w(\lambda,\varphi,z) = 4\sin(4\lambda)\cos^2(5\varphi)\sin^3\left(8\pi\frac{z}{z_T}\right)$$

 Infinity-norm of the difference between the true and numerical as a function of V-cycles

Franklin (2D multigrid, 20V-cycles, 20 layers)

The **NERSC Cray XT4** system, named **Franklin**, is a massively parallel processing (MPP) system with **9,660 compute nodes**. Each node has quad processor cores, and the entire system has a total of **38,640** processor cores.

Each compute nodes consists of a **2.3 GHz** single socket **quad-core AMD Opteron processor** (**Budapest**) with a theoretical peak performance of 9.2 GFlop/sec per core (4 flops/cycle if using SSE128 instructions). Each compute node has 8 GB of memory (2 GB of memory per core), and each service node (e.g. login node) has 8 GB of memory. Each compute node is connected to a dedicated **SeaStar2** router through Hypertransport with a 3D torus topology.

Time (s)		Number of cores					
		640	1280	2560	5120	10240	20480
Grid resolution	2,621,442 (9) (15.64km)	0.563	0.368	0.276	0.220		
	10,485,762 (10) (7.819km)	2.306	0.953	0.545	0.386	0.265	
	41,943,042 (11) (3.909km)	9.434	4.447	2.281	0.968	0.595	0.411
	167,088,642 (12) (1.955km)	insufficient memory per core	18.163	9.427	4.420	2.359	1.005
	671,088,642 (13) (0.977km)	insufficient memory per core	insufficient memory per core	insufficient memory per core	18.235	9.405	4.427

Current status and work

- Much of the computational infrastructure of the baroclinic model can be reused. e.g. parallel domain decomposition and communication
- Parallel 3D multigrid methods work well for elliptic equations on the icosahedral grid. 2D multigrid scales well to large numbers of processes.
- The stretching and tilting terms in the vorticity equations are straightforward and use many of the grid metrics developed for other operators.
- Advection is defined at cell centers, corners and edges:
 - Centers. 3rd-order upstream biased. Done
 - Corners. 3rd-order upstream biased. Done
 - Edges. Currently being developed.