Developing SGS turbulence models for CRMs or MMFs

Chin-Hoh Moeng National Center for Atmospheric Research

CMMAP team meeting (Jan. 2010)

Our approach: Benchmark simulation that resolves a wide range of scales deep/middle/shallow clouds and turbulence...

Separate scales to: CRM "resolvable" and "SGS" components $w = \tilde{w} + w'$

Spectra from the benchmark run

Split into "resolvable" and "SGS" components according to a typical CRM resolution.

Also retrieve local SGS fluxes from the benchmark run: τ_{wq}

e.g., filter width = 4 km

Three simple models

Model 0:
$$\tau_{wq} = -K_h \partial \tilde{q} / \partial z$$
; where $K_h \propto \ell \sqrt{e}$

Model 1: Same as Model 0 but the SGS length scale depends on filter width, wall scale, and local stability.

Model 2: Add a "mass-flux" M-term to Model 1;

$$M - term \propto \tilde{w}(\tilde{q} - \langle q \rangle)$$

The proportionality empirically obtained; depends on z ds.

Spatial distributions

retrieved and modeled SGS q-fluxes

Figure 1: Model 0: with just the K term.

Spatial distributions

retrieved and modeled SGS q-fluxes

Figure 1: Horizontal distributions of the LES-retrieved SFS fluxes with a filter width of 4 km (left panels) and the modeled SGS fluxes (right panels) of water vapor at z = 3000 m, 1500 m, 600 m, and 200 m (from top to bottom).

1. Length-scale corrections improve the presentation in the PBL

2. Mass-flux term improves the presentation above

Model-2 performance with various filter widths

 \checkmark $\Delta f = 4$ km corresponds to a CRM grid mesh~1km.

Future studies

 Test model-2 in SAM and in prototype MMF (both 2D&3D CRMs).
 Create benchmark simulations for various cloud types.

Investigate all cloud types

Create a database of benchmark simulations of all cloud regimes: tropical cloud systems, midlatitude storms, squall lines...