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Orogenic MCS downstream of mountains

MCC Population
o Terrain > 1000m
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IPCC ARA4: Changes in precipitation estimated from climate models for
World’s most populated regions have low confidence (< 66% of models
agree on the sign of the change, white), especially in summer

Correlated with organized convective activity over continents

Projected Patterns of Precipitation Changes
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FIGURE SPM-7. Relative changes in precipitation (in percent) for the period 2090-2099, relative to 1980-1999. Values
are multi-model averages based on the SRES A1B scenario for December to February (left) and June to August (right).
White areas are where less than 66% of the models agree in the sign of the change and stippled areas are where more than
90% of the models agree in the sign of the change. {Figure 10.9}



An objective of multiscale cloud-
system modeling —to bridge the

“parameterization scale gap”
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Satellite & field
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Dynamics




Approximate the nonlinear equations as total
Lagrangians to facilitate integration

D
—F = 0
Dt

E'(?f» V) = Ci(l//)

where F. represents dynamics, energy, mass, vorticity variables
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Momentum: Work-energy constraint

Jpu 0o 5 0
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0

g = 0, rigid upper/lower boundaries z= 0, H

integrate over model domain A<x <B,0 <z<H




Free boundaries, shape determined
as part of the solution
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Steering level p

Viy =

vorticity along inflow vorticity generated by
trajectories vorticity latent heating

F (y,z,c): buoyancy




Maximally efficient regime of organization




3 forms of energy -- convective available potential
energy (CAPE); work done
by the pressure gradient -- 2 dimensionless quantities:
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CONVECTIVE Parameterizations do not
i X represent slantwise layer
MEDIUM
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CRM simulation




Propagating convection downstream of moutains

Afternoon Next morning

Mesoscale
downdraft

Elevated heating determines start
position & start time of traveling
convection

~1000 km




Meridionally averaged rain-rate

NEXRAD analysis L .
Carbone et al. (2002) 3-km explicit 10-km explicit 10-km Betts-Miller
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Moncrieff and Liu (2006)



‘Grid-scale’ circulations capture propagating precipitation

Parameterized Explicit
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Resolution dependence
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Systematic error in convective heating

 Systematic warming:

| mesoscale downdrafts
| too weak -

| parameterize this

. cooling
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EARLY VIEW OF
OCEANIC TROPICAL
CLOUD EXSEMBLE

By lots of
Cumulo- Cumulus s&nn_y clouds Ara ka wa &

"hr(]jtnt]g::r' Schubert (1974)
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PROPAGATING MCS: 3-D cloud structures (shallow vs. deep, convective vs.
stratiform, warm vs. cold downdrafts, and associated mesoscale circulation




Upscale evolution of MCS

Dynamic
triggering

Stage'l:onset Stage 2:'multicell famiiy
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Represent as a
parameterization




Stratiform heating/mesoscale downdraft
parameterization

P - P

ps_p*
Ps-P

P«-P t
= parameterized convective heating

Qm (p,t) =, X (t) sin

Qm (p,t) =, 7T (t) sin

P
(

Moncrieff and Liu (2006)
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Propagating orogenic convective systems in SPCAM

Prichard, Moncrieff & Somerville, PP BOG




Conclusions

Orogenic propagating convection not represented in
climate models

Even highest resolution global NWP models do not well
represent the stratiform heating, mesoscale downdraft,
If at all

Parameterization framework for straiform heating/

mesoscale downdrafts defined

Explicit dynamical & numerical models a baseline for

investigations of SP-CAM propagating convection over
Us

... pathway to quantifying role of propagating mesoscale
convection in the MJO




Transpose-AMIP simulations of the MJO

associated with Year of Tropical
Convection (YOTC)

Mitch Moncrieff, NCAR




Year of Tropical Convection
(YOTC)

Mitch Moncrieff, NCAR
Duane Waliser, JPL/Caltech

Co-chairs, YOTC Science Planning Group

A World Weather R&qegrc% Programme

Contribution to Seamless
Weather-Climate Prediction




Global Prediction

Integrated Observations

High-resolution operational Satellite, field-campaign, in-situ
deterministic-model data sets data sets

Focus Areas
MJO & CCEWs '
Easterly Waves & TCs
Trop-ExtraTrop
Interaction
Research Diurnal Cycle

Attribution studies of global data sets; pa Monsoons
superparameterized, and explicit con
regional-to-global models; theoretica




“Virtual Field Campaign” approach utilizing
existing resources with model, parameterization &
forecast improvement as the prime objective.

Conceptual

« N
e Satellite Observations (e.g., @
EOS)

* In-Situ Networks (e.g., \ )
ARM, CEOP) “Virtual

* GOOS (e.g., TAO, RAMA, Field
drifters)
o, VOCALS, T-PARC




Planning Phase completed

e Science Plan — Published

- Implementation Plan drafted

NASA

* Successful YOTC Sessions — Fall AGU’08, AMS 09,
Spring AGU’09, Fall AGU’09, AGU’10,




Analyses, Forecasts
& Special Diagnc
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The A-Train

Satellite Data

Key satellite data (e.g., A-Train, TRMM centric geostationary)
identified, funding from NASA to develop for YOTC:

 Giovanni-based dissemination framework - YOTC-GS.
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Field Programs &
Synoptic Periods

* Field programs during “Year” benefit from and
contribute to YOTC.

- Synoptic periods of interest have been
identified for research

- YOTC documents La Nina and El Nino
episodes, and recent anomalous weather




Kelvin Wave Activity: June 19




Satellite Data Analysis
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YOTC’s International Coordinated Research

« Transpose-AMIP 5-day hindcasts :
i) WGNE CMIP5 Model studies.
i) Multiple GCMs — European GEWEX/EUCLIPSE project.

iii) YOTC Transpose AMIP and other High-Res Experiments
Multi-model (e.g., CMIP5, CAM, SPCAM), 5-day forecast every
YOTC day; also NICAM, GEOS, NCM for selected events

High Resolution (~1 km -10 km) hindcasts: Cascade, NICAM,
GMAO & NCAR.

Multi-model 20-year hindcasts, CLIVAR Asian Australian
Monsoon Panel (AAMP); Asian Monsoon Years (AMY)

YOTC MJO Task Force

Northward propagation of ITCZ, boreal summer
Goddard Multiscale Modeling Framework (MMF)




