Development of a Third-order Closure Turbulence Model With Subgrid-scale Condensation

Grant J. Firl and David A. Randall

8th CMMAP Team Meeting January 12-14, 2010

Model Description

- Predicts 10 second-order moments: 3 TKE components, 4 vertical fluxes, 3 thermodynamic variances/covariances
- Diagnoses 28 third-order moments algebraically
- Diagnoses cloud water and cloud fraction using a SGS condensation scheme
 - diagnosed clouds interact with turbulence through the buoyancy terms

What makes it unique?

Many standard parameterization techniques are used (e.g. dissipation and pressure correlation terms), but at least 2 aspects are nonstandard:

- diagnostic third-order moments
- SGS condensation scheme

Second-order Moments	Third-order Moments
	$\overline{w'^{3}}, \overline{w'u'^{2}}, \overline{w'v'^{2}}, \overline{w'^{2}u'}, \overline{w'^{2}v'},$
$\overline{u'^{2}}, \overline{v'^{2}}, \overline{w'^{2}},$ $\overline{w'u'}, \overline{w'v'}, \overline{w'\theta_{l}'}, \overline{w'q_{t}'},$ $\overline{\theta_{l}'^{2}}, \overline{\theta_{l}'q_{t}'}, \overline{q_{t}'^{2}}$	$\overline{u^{\prime 2}\theta_{l}^{\prime}}, \overline{v^{\prime 2}\theta_{l}^{\prime}}, \overline{w^{\prime 2}\theta_{l}^{\prime}}, \overline{u^{\prime 2}q_{t}^{\prime}}, \overline{v^{\prime 2}q_{t}^{\prime}}, \overline{w^{\prime 2}q_{t}^{\prime}}, \overline{w^{\prime 2}q_{t}^{\prime}},$
	$\overline{w'u'\theta_{l}'}, \overline{w'u'q_{t}'}, \overline{w'v'\theta_{l}'}, \overline{w'v'q_{t}'},$
	$\overline{u'\theta_l'^2}, \overline{v'\theta_l'^2}, \overline{w'\theta_l'^2}, \overline{u'q_t'^2}, \overline{v'q_t'^2}, \overline{w'q_t'^2},$
	$\overline{u'\theta_{l}'q_{t}'}, \overline{v'\theta_{l}'q_{t}'}, \overline{w'\theta_{l}'q_{t}'},$
	$\overline{\theta_l^{\prime 3}}, \overline{\theta_l^{\prime 2} q_t^{\prime}}, \overline{\theta_l^{\prime} q_t^{\prime 2}}, \overline{q_t^{\prime 3}}$

Model Description

Third-order Moments (TOMs)

All TOMS are diagnosed using the method of Cheng et al. (2005):

- 1. Dynamic predictive equations for TOMs are derived
- 2. Unclosed terms are parameterized
 - Fourth-order moments are parameterized as

$$\overline{a'b'c'd'} = \left(\overline{a'b'} * \overline{c'd'} + \overline{a'c'} * \overline{b'd'} + \overline{a'd'} * \overline{b'c'}\right) + \left(\overline{a'b'c'd'}\right)_{NG}$$

"quasi-normal" assumption

3. Tendency terms are neglected, and diagnostic relations are obtained by analytically solving a system of linear equations

- "Non-Gaussian" part
 - determined from LES
 - simplifies TOMs
 - improves behavior relative to quasinormal assumption

$$\frac{u_{i}'u_{i}'\theta_{i}'}{\partial t} = -\overline{u_{j}'u_{i}'u_{i}'}\frac{\partial\overline{\theta_{i}}}{\partial x_{j}} - \overline{u_{j}'u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}}}{\partial x_{i}} - \overline{u_{j}'u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial x_{i}} - \overline{u_{i}'u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial x_{i}} - \overline{u_{i}'u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial x_{i}} + \overline{u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial x_{i}} + \overline{u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial x_{j}^{2}} + \overline{u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial x_{j}^{2}} + \overline{u_{i}'\theta_{i}'}\frac{\partial^{2}u_{i}'}}{\partial x_{j}^{2}} + \overline{u_{i}'\theta_{i}'}\frac{\partial^{2}u_{i}'}}{\partial x_{j}^{2}} + \overline{u_{i}'\theta_{i}'}\frac{\partial^{2}u_{i}'}}{\partial x_{j}^{2}} + \overline{u_{i}'\theta_{i}'}\frac{\partial^{2}u_{i}'}}{\partial x_{j}^{2}} - \overline{u_{i}'u_{i}'u_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}}{\partial\overline{u_{i}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{i}'u_{i}'}}} + \overline{u_{i}'\theta_{i}'}\frac{\partial^{2}u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}} + \overline{u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}} + \overline{u_{i}'\theta_{i}'}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_{i}'u_{i}'u_{i}'u_{i}'}}{\partial\overline{u_{j}'u_{i}'}}\frac{\partial\overline{u_{i}'u_$$

Model Description

SGS Condensation

 $\chi' \theta'_{v} = \chi' \theta'_{l} + C_{T_0} \chi' q'_{t} + D(z) \chi' q'_{l}$

SGS condensation scheme is needed to provide 3 things:

- cloud fraction and cloud water (for radiation and microphysics calculations)
- second- and third-order correlations involving cloud water

buoyancy terms can be written

Cloud fraction and water are calculated from general functions of Cuijpers and Bechtold (1995)

• they are functions of *Q*₁, the "normalized saturation deficit"

Cloud water correlations are cloud regime dependent

- Gaussian relations of Mellor (1977) for Sc
- Positively skewed relations from Bougeault (1981) for Cu
- linearly interpolate based on Q1 for intermediate regimes

need to parameterize

Tests

Single Column Model (SCM)

- 5 standard test cases
 - 1. clear convective BL (Wangara) 🗸
 - 2. smoke filled BL \checkmark
 - 3. nocturnal drizzling stratocumulus (DYCOMS)
 - 4. non-precipitating trade-wind cumulus (BOMEX)
 - 5. precipitating trade-wind cumulus (RICO) 🗸

	Case	# of LES participants
	Smoke	13
S	DYCOMS	11
	BOMEX	10
	RICO	15

GCS

Turbulence Parameterization in 3D VVM

- 2 standard test cases
 - 1. nocturnal drizzling stratocumulus (DYCOMS)
 - 2. non-precipitating trade-wind cumulus (BOMEX)

Features

- sharp inversion
- constant surface fluxes
- forcings: subsidence, large-scale PGF, net LW forcing (q_l),cloud droplet sedimentation

<u>Goal</u>

Test complete model for a drizzling stratocumulus regime

New Model

LES mean

Features

- conditionally unstable profile
- ~5% cloud fraction; ~1 km deep cumuli
- constant surface fluxes
- forcings: subsidence, large-scale PGF, radiative cooling, large-scale moisture advection

Goal

Test complete model for a nonprecipitating low cloud fraction cumulus regime.

Tests in 3D Vector Vorticity Model (VVM)

Modifications to VVM include:

- thermodynamic variables
- turbulence scheme
- microphysics scheme

The horizontal grid spacing is 2 km.

The modified VVM uses about 10% more computer time than the control version.

	Standard VVM	Modified VVM
Thermodynamic Vars.	θ, q _v , q _c , q _i , q _r , q _s , q _g ,	θι, qt, 2 rain water (cloud water diag.)
Turbulence	1st order scheme (Ri-dependent K)	New 3 rd -order closure model
Microphysics	Bulk Model including ice Lin et al. (1983); Lord et al. (1984); Krueger et al. (1995)	Khairoutdinov and Randall (2003) modified for SGS partial cloudiness

Ongoing Work

Goal: eliminate spurious cloud water oscillation

- Cheng, Xu, and Golaz (2004) studied this oscillation
- recommendation: improve parameterization of the liquid water correlations in the buoyancy terms (particularly for TOMs)

$$\overline{\chi'\theta'_{\nu}} = \overline{\chi'\theta'_{l}} + C_{T_0}\overline{\chi'q'_{t}} + D(z)\overline{\chi'q'_{l}}$$

Method: parameterize buoyancy terms according to Lewellen and Lewellen (2004)

buoyancy terms are parameterized as interpolation between clear and cloudy limits:

$$w'\theta'_{v} = (1 - \hat{R})w'\theta'_{v\,CLEAR} + \hat{R}w'\theta'_{v\,CLOUD}$$

where \hat{R} is the "effective cloud fraction" obtained from a mass-flux approach

Early Testing:

Improvements

- better buoyancy flux
- oscillation gone
- better cloud fraction profile

Needs work

weak TOMs

I. Model Description

- II. Single Column Model Tests
- III. 3-D Vector Vorticity Model Tests

IV. Ongoing Work

Conclusions

- Developed a new third-order closure turbulence model
 - Diagnostic TOMs, non-Gaussian FOMs
 - SGS condensation
 - Microphysics scheme that accounts for SGS cloudiness
- 5 SCM cases
 - Wangara
 - Smoke Cloud
 - DYCOMS II
 - BOMEX & RICO
- 2 3-D cases
 - modified version performs better than standard version with small computational penalty

Future Work

- Eliminate cloud water oscillation
- Reduce # of SOMs, TOMs
- Run more test cases
- Port model to SAM
- Test in GCM