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Motivation and Research Questions

• In 19-yr SPCAM AMIP simulation, SSTs were not allowed to respond in a 
natural manner to surface fluxes

• Interactions between the atmospheric boundary layer and oceanic mixed 
layer can substantially impact MJO structure and propagation

• Krishnamurti et al. (1988), Zhang and McPhaden (1995), Zhang (1996), Jones and Weare (1996), Lau and Sui (1997), 
Hendon and Glick (1997), Shinoda et al. (1998), Yoneyama et al. (2008)

• How does MJO structure, intensity, and propagation change in the SPCAM 
if  we allow tropical SSTs to respond to anomalous surface fluxes?



Data Sources

• Validation data:

• ECMWF-Interim Reanalysis (ERAI):  dynamic and thermodynamic variables

• GPCP:  rainfall

• NOAA satellites:  OLR, SST

• TRMM Microwave Imager (TMI):  Total column water

• Simulated data:  Two 5-year time segments of  SPCAM daily output

• 1 Sep 1999 – 31 Aug 2004

• First 5-year segment taken from SPCAM AMIP simulation (“CTL”)

• Second 5-year segment taken from a new SPCAM simulation that is identical to the first except for the 
inclusion of  a slab-ocean model (Waliser et al. 1999) used to predict SST anomalies that are coupled to 
the atmosphere (“SOM”):
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• No significant differences of  global 
energy budget between standard 
CAM, uncoupled SPCAM, and 
coupled SPCAM

• Mean state differences are small ➞  

we can infer that changes to MJO 
structure can be mainly attributed to 
effects of  slab-ocean model  

Selected Results:  The Basics
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• SOM indicates more realistic distribution of  low-frequency power, improved 
Kelvin and Rossby signals, and a larger east-west power ratio

Selected Results:  Spectral Analysis
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• 20-100-day filtered signals

• SOM:  Greater MJO signal 
coherence

• MJO convection remains organized 
over a larger space-time domain

• Couplet of  leading 
easterlies-trailing westerlies

• improved relationship between 
convection and dynamics

Selected Results:  Lag Correlation 1
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• 20-100-day filtered 
signals

• Substantially more 
realistic SST structure 
in SOM

• Improved coupling of  
low-level zonal winds 
over a larger spatial 
domain in SOM

Selected Results:  Lag Correlation 2
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SOM

CTL

OBS LAG DAY –5

• More robust convection that has 
propagated into the 90°E focus 
region in SOM

• Weaker convection appears to 
develop in situ at 90°E in CTL

Selected Results:  Lag Regression
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Selected Results:  Lag Regression

LAG DAY 0

• Considerably broader longitudinal 
extent of  convection in SOM

• Noticeable weakening of  convection 
along Equator in CTL
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Selected Results:  Lag Regression

LAG DAY +5

• Significantly improved longitudinal 
extent of  convection and low-level 
winds in SOM

• No significant convective or 
dynamic signal in West Pacific in 
CTL



Selected Results:  Lag Regression

CTL

SOM

OBS

Cloud heating, 90°E Cloud heating, 150°E

Contour interval: 0.4 K/day  (first contour 0.2 K/day)

• SOM:  Improved structure and intensity of  convective heating in Indian 
Ocean region (as well as many other variables)

• West Pacific MJO too strong in SOM



Discussion:  Mechanisms

• Timeseries of  spatially averaged regression 
values

• Index:  standardized rainfall at 90°E

• Spatial average:  10°x10° box, centered on 90°E and Equator

• Unified y-axis (for comparison)

• CTL: Before Day –10, no significant 
relationships between most low-level variables

• Improved phasing of  low-level variables—
moisture convergence, insolation, SSTs—
promotes coherent MJO eastward propagation 
and more realistic convective intensity for 
Indian Ocean MJO events in the SOM



Discussion:  Model Biases

• Out-of-phase relationship of  boundary layer moisture between SPCAM 
and observations

“West” “East”
Day of  max rain
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Discussion:  Model Biases

• Notes on the low-level moisture bias:

• Not related to air-sea coupling

• Errors are largest in the lower boundary layer

• Not related to large-scale advection

• SPCAM boundary layer moisture too sensitive to 
surface evaporation

• Processes (on CRM scale or smaller) that regulate 
boundary layer moisture are too weak...

• Hypothesis:  Underrepresentation of  

shallow cumuli in the SPCAM leads to 

unrealistically weak vertical moisture 

fluxes and excessive accumulation of  

water vapor within the boundary layer

Low-level moisture anomalies

CTL

SOM
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Conclusions

• Analysis of  19 years of  data from an uncoupled SPCAM simulation reveals an 
improved MJO representation compared to the standard CAM

• more realistic structures of  winds, moisture, heating, and advection in the composite MJO

• Compared to the uncoupled SPCAM, the MJO in the coupled SPCAM is more 
realistic

• improved spectral and physical MJO structures

• improved signal coherence and eastward propagation ➞ better phasing between low-level variables, 

including moisture convergence

• Model deficiencies need to be addressed

• Overly intense MJO in West Pacific ➞ mean state errors, lack 

of  CMT

• Boundary layer moist bias ➞ underrepresented shallow 

cumuli



Items to Consider...

• Longer simulation of  the coupled SPCAM (> 5 years), more MJO events

• Investigate the quantitative impact of  air-sea coupling by re-running the 
SPCAM forced by the resulting SSTs from the coupled simulation

• Extend the influence of  the slab-ocean model to higher latitudes and 
examine:

• changes to the “Great Red Spot”

• impacts on marine stratus clouds

• CRM resolution, CRM parameterizations, shallow cumuli


