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The Importance of QG Theory

“I personally regard the successful 
reduction of the dynamic equations to a 
single prognostic equation by means of 

the geostrophic relationship as the 
greatest single achievement of twentieth-

century dynamic meteorology.”

Edward Lorenz (2006)
(Annu. Rev. Earth Planet. Sci., Vol. 34, 37-45)



QG Theory Inspires & Fascinates
“I was particularly inspired by the 

concept of quasi-geostrophy and then 
fascinated by the fact that even highly 
simplified dynamical models such as 

the quasi-geostrophic barotropic model 
have some relevance to extremely 
complicated day-to-day weather 

changes.”

Akio Arakawa (2000)
“General Circulation Model Development”



The Gap between
Simulation and Understanding

in Climate Modeling

Isaac Held, BAMS, 2005

“I have returned repeatedly to 
Phillips’ (1956) original GCM, the two-
layer QG model of a statistically steady 

baroclinically unstable jet on a beta 
plane -- the E. Coli of climate models.”



An Unhealthy Situation in 
Meteorological Research

Theoretical work proceeds with little contact 
with observations or numerical models and 

contributes little to conceptual models 
(Hoskins, QJRMS, 1983)
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The Optimum Situation in 
Meteorological Research

Observations and models of all complexities 
are used to produce evolving conceptual 

models 
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Shallow Water Model
Shallow water primitive equations on the sphere:
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Potential Vorticity (PV) 
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(PV is conserved)



Step 1:  Approximate PV 
Assume: h� h̄

Then approximate PV:
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q   is the potential vorticity anomaly

(fluid depth deviations are small)



Step 2:  Balance Condition 
Follow the arguments of Kuo (1959) and 
Charney and Stern (1962)

Assume the following linear balance condition 
between the mass field (  ) and the nondivergent 
wind field (  ): ∇ · (2Ωµ∇ψ) = g∇2h

∇2(gh− 2Ωµψ) = 0

gh = 2Ωµψ

Assume         is slowly varying:

h
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Local linear balance condition:



QG Theory on the Sphere 
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is now the quasi-geostrophic potential vorticity anomaly, and where
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Conservation Principles
Total energy:

Potential enstrophy:

where

where



  Spheroidal Harmonics
Separable:
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Meridional structure:

Special case: � = 0
Get the associated Legendre equation

Spheroidal harmonics reduce to spherical harmonics



Spheroidal Harmonic Transform Pair
Spheroidal harmonic expansion of   :

Spheroidal harmonic expansion coefficients:
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  Rossby-Haurwitz Waves

Linearized PV equation:

Dispersion relation:  
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is the Rossby-Haurwitz wave frequency. Note that in this section

This is a very accurate approximation to 
the shallow water PE results of Longuet-
Higgins (1968)



  Dispersion Diagrams

νmn(�) =
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is the Rossby-Haurwitz wave frequency. Note that in this section



Frequency Errors in Early 
NWP

When early barotropic forecast models 
became nearly hemispheric, erroneous 
westward propagation of ultralong waves 
was noticed

Cressman (1958) suggested an empirical 
“divergence” correction

Spherical QG theory provides a more 
precise theoretical interpretation of this 
problem



Frequency Correction Factor

The spherical QG Rossby-Haurwitz wave 
frequency is the product of the frequency 
correction factor and the nondivergent 
Rossby-Haurwitz wave frequency

Frequency correction factor is the ratio of 
the spherical harmonic eigenvalue to the 
spheroidal harmonic eigenvalue 
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Waves and Turbulence  
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The anisotropic Rhines barrier is defined by equating the two time scales, which, after some

Recall:

Contains nonlinear advection of 
Contains linear term associated with R-H waves

q

Dynamics is wavelike if:

Dynamics is turbulent if:



Anisotropic Rhines Barrier
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and a given , (3.7) defines a curve in the spheroidal harmonic wavenum-

Defined by equating the two time scales:

This barrier can be viewed as a surface in the 
three-dimensional               wavenumber space

For a given right hand side and given Lamb’s 
parameter, this defines a curve in the spheroidal 
harmonic            wavenumber plane(m,n)

(m,n, �)



Rhines 
Barrier 

Diagrams
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Two Approaches (on the Sphere)

q = ∇2ψ − 2Ωµ

h̄
h

is the potential vorticity anomaly. Next, we need to formulate a balance condition(A) Leave the    term in its present form and 
approximate the vorticity by its geostrophic value 
(i.e., in terms of    )

(B) Leave the vorticity term in its present form and 
approximate the    term by    

Initialize with    observations only
Bad approach on the sphere

h

h

h ψ

Initialize with wind observations only
Good approach on the sphere

h



Two Approaches (Phillips)

q = ∇2ψ − 2Ωµ

h̄
h

is the potential vorticity anomaly. Next, we need to formulate a balance condition(A) Leave the    term in its present form, approximate 
the vorticity by its geostrophic value (i.e., in 
terms of    ), and advect the potential vorticity by 
the geostrophic wind

(B) Leave the vorticity term in its present form, 
approximate the    term by    , and advect the 
potential vorticity using the nondivergent wind

h

h

h ψ

Results in better forecasts

Results in forecast errors (Phillips 1958)



Ingredients of Global QG
To obtain an invertibility principle, leave   
unchanged and approximate      by          , rather 
than leaving      unchanged and approximating      
in terms of 

Flow partitioning is between nondivergent and 
irrotational components rather than between 
geostrophic and ageostrophic components

Utilize spheroidal harmonics to understand 
Rossby waves and energy/potential enstrophy 
cascades

∇2ψ

∇2ψ
gh

gh
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2Ωµψ


