UNIFICATION OF DYNAMICAL EQUATIONS: *UNIFIED SYSTEM OF EQUATIONS*

(Arakawa and Konor, 2009, *MWR*, **137**)

Celal S Konor, JoonHee Jung and Akio Arakawa

The Center for Multi-Scale Atmospheric Processes, Colorado State University

OUTLINE:

- \bullet Introduction to the unified system of equations.
- Time integrations of the unified system of equations.
- Preliminary results obtained by the unified system based on the direct momentum prediction (square grid).
- Comparison of these results to those obtained by the anelastic system based on the momentum and vorticity predictions

THREE GROUPS OF ATMOSPHERE MODELS

UNIFIED SYSTEM OF EQUATIONS

- Through a noninvasive approximation, vertically propagating sound waves are eliminated without modifying the dynamically important modes. (See Arakawa and Konor, 2009.)
- Construction of a global numerical model is easy.

UNIFIED SYSTEM OF EQUATIONS

State Equation

$$
p = \rho RT \qquad \qquad p_{qs} = \rho_{qs} RT_{qs}
$$

$$
\frac{\partial \rho_{qs}}{\partial t} + \nabla_H \cdot \left(\rho_{qs} \mathbf{V}_H\right) + \frac{\partial}{\partial z} \left(\rho_{qs} w\right) = 0
$$

$$
\frac{\partial p_{qs}}{\partial z} = -g \rho_{qs}
$$

Horizontal Momentum Equation

$$
\frac{D\mathbf{V}_{H}}{Dt} = -f\mathbf{k} \times \mathbf{V}_{H} - c_{p}\theta \nabla_{H} (\pi_{qs} + \delta \pi) + \mathbf{F}_{H}
$$

Some Definitions

$$
\pi_{qs}\theta = T_{qs} \qquad \pi_{qs} \equiv (p_{qs}/p_{00})^k
$$

Continuity Equation Continuity Equation Continuity Equation

$$
\frac{D\ell n\theta}{Dt} = \frac{Q}{c_pT}
$$

Vertical Momentum Equation

$$
\frac{Dw}{Dt} = -c_p \theta \frac{\partial (\delta \pi)}{\partial z} + \mathbf{F}_w
$$

$$
0 = -c_p \theta \frac{\partial \pi_{qs}}{\partial z} - g
$$

$$
\pi \equiv \pi_{qs} + \delta \pi \qquad \rho_{qs} = \frac{p_{00} \pi_{qs}^{(1-\kappa)/\kappa}}{R\theta}
$$

DETERMINATION OF QUASI-HYDROSTATIC VARIABLES

Two different versions of the hydrostatic equation

$$
p_{qs} = (p_{qs})_T - g \int_{z_T}^z \rho_{qs} dz \qquad \pi_{qs} = (\pi_{qs})_T - \frac{g}{c_p} \int_{z_T}^z \frac{1}{\theta} dz
$$

Two different versions of the hydrostatic equation must satisfy the state equation

Surface and upper boundary tendency equations for π_{as}

$$
\frac{\partial}{\partial t} \left(\pi_{qs}\right)_S = \frac{\kappa g}{\left(p_{qs}/\pi_{qs}\right)_T - \left(p_{qs}/\pi_{qs}\right)_S} \left[\int_{z_T}^{z_S} \frac{\partial \rho_{qs}}{\partial t} dz + \frac{1}{R} \left(\frac{p_{qs}}{\pi_{qs}}\right)_T \int_{z_T}^{z_S} \frac{1}{\theta^2} \frac{\partial \theta}{\partial t} dz\right]
$$
\n
$$
\frac{\partial}{\partial t} \left(\pi_{qs}\right)_T = \frac{\kappa g}{\left(p_{qs}/\pi_{qs}\right)_T - \left(p_{qs}/\pi_{qs}\right)_S} \left[\int_{z_T}^{z_S} \frac{\partial \rho_{qs}}{\partial t} dz + \frac{1}{R} \left(\frac{p_{qs}}{\pi_{qs}}\right)_S \int_{z_T}^{z_S} \frac{1}{\theta^2} \frac{\partial \theta}{\partial t} dz\right]
$$

where

$$
\int_{z_T}^{z_S} \frac{\partial \rho_{qs}}{\partial t} dz = -\nabla_H \cdot \int_{z_T}^{z_S} \rho_{qs} \mathbf{V}_H dz
$$

$$
(\rho_{qs} w)_s = (\rho_{qs} w)_T = 0
$$

Quasi-hydrostatic density

$$
\rho_{qs} = \frac{p_{00}\pi_{qs}^{(1-\kappa)/\kappa}}{R\theta}
$$

DETERMINATION OF NONHYDROSTATIC VARIABLES

Horizontal and vertical components of mass weighted-momentum equation

$$
\frac{\partial}{\partial t} \left(\rho_{qs} \mathbf{V}_{H} \right) = \mathbf{G}_{3} - \left(\rho_{qs} c_{p} \theta \right) \nabla_{H} \left(\delta \pi \right) \qquad \qquad \frac{\partial}{\partial t} \left(\rho_{qs} w \right) = \left(G_{4} \right) \ - \left(\rho_{qs} c_{p} \theta \right) \ \frac{\partial \left(\delta \pi \right)}{\partial z}
$$

Continuity equation

$$
\frac{\partial \rho_{qs}}{\partial t} + \nabla_H \cdot (\rho_{qs} \mathbf{V}_H) + \frac{\partial}{\partial z} (\rho_{qs} w) = 0
$$

3D elliptic equation for $\delta \pi$

$$
\nabla_H \cdot \left[\left(\rho_{qs} c_p \theta \right) \nabla_H \left(\delta \pi \right) \right] + \frac{\partial}{\partial z} \left[\left(\rho_{qs} c_p \theta \right) \frac{\partial (\delta \pi)}{\partial z} \right] = \nabla_H \cdot \mathbf{G}_3 + \frac{\partial}{\partial z} G_4 + \frac{\partial^2 \rho_{qs}}{\partial t^2}
$$

Other nonhydrostatic variables

$$
\delta p \approx \frac{p_{qs}}{\kappa \pi_{qs}} \delta \pi \qquad \frac{\delta T}{T_{qs}} \approx \frac{\delta \pi}{\pi_{qs}} \qquad \frac{\delta \rho}{\rho_{qs}} \approx (1 - \kappa) \frac{\delta p}{p_{qs}}
$$

INTEGRATION PROCEDURES OF THE UNIFIED SYSTEM OF EQUATIONS (1)

BUOYANT BUBBLE SIMULATIONS

WITH THE UNIFIED, ANELASTIC AND VVM MODELS

- The unified and anelastic models are based on the direct momentum prediction. The momentum equation is discretized following Arakawa and Lamb (1981). Integration procedure (I) is used.
- The thermodynamic equation is discretized on the Lorenz (L) grid. The anelastic model has also the Charney-Phillips (CP) grid version.
- Horizontal and vertical grid distance is 250 m.

INTEGRATION PROCEDURES OF THE UNIFIED SYSTEM OF EQUATIONS (2)

BUOYANT BUBBLE SIMULATIONS

WITH THE UNIFIED, ANELASTIC AND VVM MODELS

- Improve the potential temperature advection in the VVM.
- Construct an US-VVM.
- Construct the versions of the US and VVM with the CP-grid.
- Try to explain the differences between the simulations obtained by directly predicting momentum and vorticity.
- Construct an experimental fully-compressible model for comparison purposes.

Simulations with the VVCM using different radiation schemes (Tropical Warm Pool Experiment (TWP-ICE) Forcing)

Thomas Cram

Experiments: EXP5S, CAM5S, RRT5S (v 3.4 sw and v 4.4 lw) and RRTMG1 $(v$ 3.8 sw and v 4.8 lw)

