

# Eddy-diffusivity/Mass-flux PBL parameterization: Dry convection and stratocumulus cases

Marcin Witek, Kay Suselj, João Teixeira, and Georgios Matheou

Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA

Copyright 2010 California Institute of Technology. Government Sponsorship Acknowledged.



## Motivation

To improve PBL parameterizations in weather forecast and climate models

- Dry convective boundary layer
- Shallow cumulus
- Stratocumulus
- Deep convection

Numerical models still have problems simulating dry boundary layers

Realistic simulation of dry convection is an essential stepping stone for tackling cloudy boundary layers

#### Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) simulations







## Strategy

- more coherent and effective parameterizations
- Eddy-diffusivity/Mass-flux (EDMF) approach
- TKE prognostic equation
- Surface stability scaling
- PDF based cloud scheme



Dry convective PBL: free convection limit National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California eddy-diffusivity mixing Scalar prognostic  $\frac{\partial \overline{\phi}}{\partial t} = -\frac{\partial \overline{w'\phi'}}{\partial z} + F_{\phi}$ (small eddies) Z<sub>iny</sub> **EDMF concept** : θ (Siebesma and Teixeira, 2000) <sup>7</sup>ig. source: Siebesma et al. (2007)  $\overline{w'\phi'} \cong -K_{\phi} \frac{\partial \overline{\phi}}{\partial z} + M(\phi_u - \overline{\phi})$ Mass-flux term:  $M = \rho \sigma W_{\mu}$  Unknown:  $\sigma, W_{\mu}, \phi_{\mu}, \varepsilon$ Assumption:  $\sigma = 0.1$  – we simulate the θ strongest 10% of the *w* distribution q.,  $e = \alpha + e^{-\alpha}$ Entrainment coefficient – exchange of properties between undrafts and environment mass-flux transport (strong buoyant updrafts)



**Eddy-diffusivity term:** 



- Important parameters: l and  $\tau$
- Closure based on *e*, surface stability,

- $\frac{\partial e}{\partial t} = -\frac{\partial}{\partial z} \left( -K_e \frac{\partial e}{\partial z} \right) + \frac{g}{\overline{\theta}} \overline{w' \theta_v'} D$  $D = C_e e^{3/2} / l$
- surface sensible heat flux and inversion height
- Minimal number of ad-hoc parameters







![](_page_8_Figure_0.jpeg)

Full EDMF simulations:

- surface layer more realistic
- neutral profile in the well-mixed layer
- · larger entrainment leads to better inversion height
- inversion layer too sharp compared to LES

![](_page_9_Picture_0.jpeg)

#### Boundary layer height evolution

![](_page_9_Figure_3.jpeg)

Inclusion of the mass-flux term improves simulations of the boundary layer height for a variety of surface heat fluxes

![](_page_10_Picture_0.jpeg)

## Stratocumulus case

## Moist physics

Prognostic equations for  $\theta_L = \theta \left( 1 - \frac{L_v}{Tc_p} q_l \right)$  and  $q_t = q_v + q_l$ 

PDF – based cloud parameterization (Cuijpers and Bechtold, 1995):

 $\begin{array}{lcl} CC &=& 0.5 + 0.36 \arctan(1.55Q_1) \\ q_l &=& \sigma_s \left\{ \begin{array}{cc} e^{1.2Q_1 - 1} & Q_1 < 0 \\ e^{-1} + 0.66Q_1 + 0.086Q_1^2 & Q_1 > 0 \end{array} \right. \end{array}$ 

$$Q_{1} = \frac{s}{\sigma_{s}} \qquad \begin{array}{l} s - \text{saturation deficit} \\ \sigma_{s} - \text{standard deviation of } s \end{array}$$

$$s = q_{t} - q_{s}(T) = \frac{1}{1 + \gamma} \left( q_{t} - q_{s}(T_{l}) \right)$$

$$\sigma_{s} = \max \left[ ls \left( \left( a^{2} \frac{\partial q_{t}}{\partial z} \right)^{2} + \left( b^{2} \frac{\partial \theta_{L}}{\partial z} \right)^{2} - 2ab \frac{\partial \theta_{L}}{\partial z} \frac{\partial q_{t}}{\partial z} \right)^{1/2}, 1e - 6 \right]$$

![](_page_11_Figure_0.jpeg)

![](_page_12_Picture_0.jpeg)

# Conclusions and further plans

- EDMF improves 1D simulations of dry convective PBL's
- Stratocumulus simulations compare well with LES

#### Plans:

- test EDMF parameterization in the COAMPS mesoscale model
- investigate simulation of Sc-to-Cu transition with EDMF

![](_page_13_Picture_0.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Picture_0.jpeg)

#### DYCOMS initial conditions:

![](_page_15_Figure_3.jpeg)