Simulations of Extratropical Cyclogenesis with the Unified, Quasi-Hydrostatic and Anelastic Dynamical Cores

Celal Konor

Department of Atmospheric Science Colorado State University

Tenth CMMAP Team Meeting, 11-13 January 2011, Berkeley, CA Dynamical Framework Working Group A dynamical core based on the unified (UN) system has been constructed. The preliminary results are very encouraging

Outline

- A descriptive comparison of the unified (UN), quasi-hydrostatic (QH) and anelastic (AN) dynamical cores
 - Continuous equations
 - Important aspects of discretization of the UN dynamical core
- Simulations of extratropical cyclogenesis on midlatitude β and f- planes
- A comparison of the results obtained by the three models
- Conclusions

Equations of the Models			
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>	<u>Unified</u>	
$\frac{D\mathbf{v}}{Dt} + f\mathbf{k} \times \mathbf{v} + c_p \theta \nabla_H \pi_{qs} = \mathbf{F}_H$	$\frac{D\mathbf{v}}{Dt} + f\mathbf{k} \times \mathbf{v} + c_p \overline{\theta} \nabla_H \pi' = \mathbf{F}_H$	$\frac{D\mathbf{v}}{Dt} + f\mathbf{k} \times \mathbf{v} + c_p \theta \nabla_H \pi_{qs} + c_p \theta \nabla_H \delta \pi = \mathbf{F}_H$	
$\pi = \pi_{qs}$	$\pi = \overline{\pi}(z) + \pi'$ $\theta = \overline{\theta}(z) + \theta'$ Bar: Basic/Mean state prime: Deviation	$\pi = \pi_{qs} + \delta \pi$ qs: Quasi-hydrostatic δ : Non-hydrostatic	
$c_{p}\theta \frac{\partial}{\partial z}\pi_{qs} = -g$ $\left[\frac{1}{\rho_{qs}}\frac{\partial}{\partial z}p_{qs} = -g\right]$	$\frac{Dw}{Dt} + c_p \overline{\theta} \frac{\partial}{\partial z} \pi' - g \frac{\theta - \overline{\theta}}{\overline{\theta}} = F_w$ Not used in the model	$\frac{Dw}{Dt} + c_p \theta \frac{\partial}{\partial z} \delta \pi = F_w$ Not used in the model	
$\frac{D\theta}{Dt} = \frac{Q}{c_p \pi_{qs}}$	$\frac{D\theta}{Dt} = \frac{Q}{c_p \pi}$	$\frac{D\theta}{Dt} = \frac{Q}{c_p \pi}$	

Equations of the Models (Cont.)				
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>	<u>Unified</u>		
$c_{p}\theta\frac{\partial}{\partial z}\pi_{qs} = -g and \frac{\partial}{\partial z}p_{qs} = -\rho_{qs}g$		$c_p \theta \frac{\partial}{\partial z} \pi_{qs} = -g and \frac{\partial}{\partial z} p_{qs} = -\rho_{qs} g$		
$\frac{\partial}{\partial t} (\pi_{qs})_{s} = H_{1} and \frac{\partial}{\partial t} (\pi_{qs})_{T} = H_{2}$	N / A	$\frac{\partial}{\partial t} (\pi_{qs})_{s} = H_{1} and \frac{\partial}{\partial t} (\pi_{qs})_{T} = H_{2}$		
$\rho_{qs} = \frac{p_{00}\pi_{qs}^{(1-\kappa)/\kappa}}{R\theta}$	N / A	$\rho_{qs} = \frac{p_{00}\pi_{qs}^{(1-\kappa)/\kappa}}{R\theta}$		
$\frac{\partial \left(\rho_{qs} w\right)}{\partial z} = -\nabla_{H} \cdot \left(\rho_{qs} \mathbf{v}\right) - \frac{\partial \rho_{qs}}{\partial t}$ Used to obtain w	$\frac{\partial \left(\overline{\rho}w\right)}{\partial z} = -\nabla_{H} \cdot \left(\overline{\rho}\mathbf{v}\right)$ Used to obtain w	$\frac{\partial \left(\boldsymbol{\rho}_{qs} \boldsymbol{w}\right)}{\partial z} = -\boldsymbol{\nabla}_{H} \cdot \left(\boldsymbol{\rho}_{qs} \mathbf{v}\right) - \frac{\partial \boldsymbol{\rho}_{qs}}{\partial t}$ Used to obtain w		

Equations of the Models (Cont.)					
<u>Quasi-Hydrostatic</u>	<u>Anelastic</u>		<u>Unified</u>		
N / A	$\boldsymbol{\nabla}_{H} \cdot \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} c_{p} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} \bar{\boldsymbol{\Theta}} \boldsymbol{\nabla}_{H} \pi' \right) + \frac{\partial}{\partial z} \left(\bar{\rho} $	$= \overline{\theta} \frac{\partial}{\partial z} \pi' $ $= G_{AN}$	$\nabla_{H} \cdot \left(\rho_{qs}c_{p}\theta \nabla_{H}\delta\pi\right) + \frac{\partial}{\partial z}\left(\rho_{qs}c_{p}\theta\frac{\partial}{\partial z}\delta\pi\right)$ $= -\nabla_{H} \cdot \left(\rho_{qs}c_{p}\theta \nabla_{H}\pi_{s}\right) + G + \frac{\partial^{2}\rho_{qs}}{\partial z}\delta\pi$		
	Generally requires more iteratio unified counterpart since π als quasi-hydrostatic component.	ns than the o includes a	$H(r_{qs}, p, H, q_s) = \partial t^2$		
Additional Models					
<u> "Anelastic" Quasi-Hydrostatic</u>		"Anelastic" Unified			
$\frac{\partial \rho_{qs}}{\partial t} = \frac{\partial^2 \rho_{qs}}{\partial t^2} = 0$		$\frac{\partial \rho_{qs}}{\partial t} = \frac{\partial^2 \rho_{qs}}{\partial t^2} = 0$			

Thermodynamic equation

Advection of potential temperature is written in a form that is consistent with the flux convergence form

Flux convergence form:

Corresponding advective form:

$$\frac{\partial \theta}{\partial t} = \underbrace{\frac{1}{\rho_{qs}} \left[-\nabla_H \cdot \left(\theta \mathbf{v}^* \right) + \theta \nabla_H \cdot \mathbf{v}^* \right]}_{-\mathbf{v} \cdot \nabla_H \theta} + \underbrace{\frac{1}{\rho_{qs}} \left[-\frac{\partial \left(\theta w^* \right)}{\partial z} + \theta \frac{\partial w^*}{\partial z} \right]}_{-\frac{w^2 \theta}{\partial z}} + \frac{Q}{c_p \pi_{qs}}$$

Discretization of horizontal mass flux $\mathbf{v}^* = \rho_{qs} \mathbf{v}$ follows Takacs 3rd-order uncentered scheme

 \blacksquare Discretization of $\theta \mathbf{v}^*$, θw^* and w^* follows a 3rd order uncentered scheme

Time integration scheme follows 2nd Adams-Bashforth (3rd Adams-Bashforth is an option)

Prediction of the quasi-hydrostatic surface exner pressure and density

• Vertical sum of the quasi-hydrostatic mass is predicted through the continuity equation.

$$\sum_{\ell=1}^{K} \left(\rho_{qs} \right)_{\ell}^{n+1} \left(\delta z \right)_{\ell} = \sum_{\ell=1}^{K} \left(\rho_{qs} \right)_{\ell}^{n} \left(\delta z \right)_{\ell} - \delta t \sum_{\ell=1}^{K} \left(\mathbf{v}^{*} \right)_{\ell}^{n} \left(\delta z \right)_{\ell}$$

Vertical sum of the two forms of hydrostatic equations must produce the same exner pressures for the top and surface at the next time step. Then the surface exner pressure at the next time step is obtained by

4

$$\left(\pi_{qs}^{1/\kappa}\right)_{S}^{n+1} = \left[\left(\pi_{qs}\right)_{S}^{n+1} - \frac{g}{c_{p}}\sum_{\ell=1}^{K}\frac{\left(\delta z\right)_{\ell}}{\theta_{\ell}^{n+1}}\right]^{1/\kappa} + \frac{g}{p_{00}}\sum_{\ell=1}^{K}\left(\rho_{qs}\right)_{\ell}^{n+1}\left(\delta z\right)_{\ell}$$

■ For internal interfaces, the exner pressures are obtained by

$$\left(\pi_{qs}\right)_{k+1/2}^{n+1} = \left(\pi_{qs}\right)_{k-1/2}^{n+1} - \frac{g}{c_p} \frac{1}{\theta_{\ell}^{n+1}}$$

The density at the next time step

$$\left(\rho_{qs}\right)_{k}^{n+1} = \frac{1}{c_{p}\theta_{k}^{(n+1)}} \frac{\left(p_{qs}\right)_{k-1/2}^{n+1} - \left(p_{qs}\right)_{k+1/2}^{n+1}}{\left(\pi_{qs}\right)_{k-1/2}^{n+1} - \left(\pi_{qs}\right)_{k+1/2}^{n+1}}$$

Computation of the nonhydrostatic exner pressure

■ A simple 3D elliptic solver is used. A smoother is applied between the iteration steps to emulate the reduction process with the multigrid method.

Discretization of the first and second derivatives of density

$$\left(\frac{\partial\rho_{qs}}{\partial t}\right)^{n+1} = 1.333 \times \frac{\left(\rho_{qs}\right)^{n+1} - \left(\rho_{qs}\right)^n}{\Delta t} - 0.333 \times \frac{\left(\rho_{qs}\right)^{n+1} - \left(\rho_{qs}\right)^{n-1}}{2\Delta t}$$

$$\left(\frac{\partial^2 \rho_{qs}}{\partial t^2}\right)^{n+1} \equiv \frac{1}{\Delta t} \left[\left(\frac{\partial \rho_{qs}}{\partial t}\right)^{n+1} - \left(\frac{\partial \rho_{qs}}{\partial t}\right)^n \right]$$

■ Horizontal and vertical grids are the C-grid and the L-grid, respectively

Momentum equation

Advection of momentum is written in the vector invariant form

$$\frac{\partial \mathbf{v}}{\partial t} + f\mathbf{k} \times \mathbf{v} \quad \Longrightarrow \quad \frac{\partial \mathbf{v}}{\partial t} + q\mathbf{k} \times \mathbf{v}^* + \nabla_H K + w \frac{\partial \mathbf{v}}{\partial z}$$

- **Discretization of** $q\mathbf{k} \times \mathbf{v}^* + \nabla_H K$ follows Takano-Wurtale 4th order scheme
- Arakawa-Lamb and Arakawa-Hsu schemes are other options
- Arakawa-Hsu enstrophy damping procedure is included
- Discretization of $K = \frac{1}{2} \mathbf{v}^2$ follows corresponding SICK-proof forms
- Discretization of horizontal mass flux $\mathbf{v}^* = \rho_{qs} \mathbf{v}$ follows Takacs 3rd-order uncentered scheme
- **Discretization of** $w \frac{\partial \mathbf{v}}{\partial z}$ follows a 2nd order centered scheme
- Time integration scheme follows 2nd Adams-Bashforth (3rd Adams-Bashforth is an option)

Momentum equation

■ The time integration scheme for the quasi-hydrostatic and nonhydrostatic pressure gradient force terms follows the Mesinger-Arakawa economical implicit scheme. (In the sense that the prediction of quasi-hydrostatic and nonhydrostatic exner pressure is completed before their use in the momentum equation.)

Computation of the vertical momentum

The continuity equation is used to compute vertical mass flux for the next time step.

$$\left(w^{*}\right)_{k+1/2}^{n+1} = \left(w^{*}\right)_{k-1/2}^{n+1} - \left(\delta z\right)_{k} \left[\nabla_{H} \cdot \left(v^{*}\right)^{n+1} + \left(\frac{\partial \rho_{qs}}{\partial t}\right)^{n+1}\right]$$

At the upper and lower boundaries

$$(w^*)_S^{n+1} = (w^*)_T^{n+1} = 0$$

Vertical velocity is

$$w_{k+1/2}^{n+1} = \frac{1}{\left(\rho_{qs}\right)_{k+1/2}^{n+1}} \left(w^*\right)_{k+1/2}^{n+1}$$

Simulations of Extratropical Cyclogenesis

■Unified (UN), quasi-hydrostatic (QH) and anelastic (AN) models are used.

■Horizontal domains are midlatitude channels on β - and *f*-planes.

Domains are 5000 km long, 13000 km wide and 18 km high.

Horizontal and vertical grid distances are 100 km and 400 m, respectively.

■ Surface friction and Newtonian type cooling are included.

Horizontal fourth-order diffusions of momentum, potential temperature are included for cosmetic reasons.

Conclusions

- The development of the unified dynamical core based on the height vertical coordinate and the square horizontal grid is completed.
- A comparison of the results indicates that there are differences between the UN and AN dynamical cores in simulating extratropical cyclogenesis.
- Elliptic solver needs less iterations for the UN system compared to the AN system. This is because, the elliptic solver computes only the nonhydrostatic (nh) portion of the pressure in the UN while it computes the deviation (qh + nh) from the mean for the AN system.

Continuation of Work

■ The development of the unified model based on the height vertical coordinate and on the *regular hexagonal* horizontal grid