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The Vector-Vorticity Dynamical Core (VVDC) on the Icosahedral Grid

4 The VVDC was originally designed for a
Cartesian grid by Jung and Arakawa (2008)
Jung, J.-H., and A. Arakawa, 2008:

A Three-Dimensional Anelastic Model Based on the
Vorticity Equation. Mon. Wea. Rev., 136, 276-294.

4 The model predicts both the horizontal
and vertical components of vorticity:

- Horizontal (green arrows) is defined
at cell edges and layer interfaces

- Vertical (purple arrows) is defined
cell corners and within a layer

4 The model predicts Potential
Temperature (red dots) defined
at layer interfaces




Rising bubble test case with the VVDC sphere

4 This animation shows cross
section of temperature through

a rising warm bubble
4 Contour interval 0.1 K
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Radial basis functions -- motivation

4 Current improvements to the model focus on aspects that are unique

to the icosahedral grid

Projection into the direction tangent

Consider a fully 3D field (tangent to

to each cell wall. Can we reconstruct
the 3D field from this information?

e

surface of the sphere) defined at cell edges.
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Radial basis functions -- motivation

4 How would we use a 3D reconstruction?

4 Recall that the horizontal vorticity (n) is defined tangent to cell walls and the
horizontal wind (V) is defined normal to cell walls.

4 Consider the n equation
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Radial basis functions -- Advection of n

4+ Consider the mass grid (black points)

4+ Three cell edges are associated with
each mass point. (cyan, magenta, yellow)

4 We can construct Voronoi control
volumes for each type (color) of edge.

4+ We would like to use the upstream
biased advection method developed
for the mass grid.

4+ Consider the flux of N across a
particular cyan cell wall.

+ Algorithm:

(1) Construct 3D N in a global coordinate system

(2) Construct an upstream flux. Sum the fluxes.

(3) Project 3D N back to the local coordinate
system




Radial basis functions -- math

4 This is based on

Bonaventura et al. (2010) Kernal-based vector field reconstruction in
computational fluid dynamic models. Int. | Numer. Meth. Fluids

4 Suppose we wish to approximate a planar vector field
u:R*>—R*> where u = [ul(x),uz(x)]
4+ Given a set of N points and /N unit vectors associated with each point
{XI,XZ,...,XN} CR’> and n, = [nll,nlz] ER® for 1<si<N

4+ Given a set of N scalar samples of the field u

U, =niT-u(Xl.)E]R for IsisN




Radial basis functions -- math

4 The reconstruction function a continuous function

s:R* = R* where 5= [sl(x),sz(x)]
with the property that

nl.T-u(Xi) = Ill.T°S(Xi) for IsisN
4 The reconstruction function S has the form

s(x)= i y qb(x—xl.)n

1
i where ¢(X) — e_a”XH
i=1 ¢(X_Xi)ni2

4 The unknown coefficients are computed from the linear system
T
Ac = (ul,uz,...,uN)
where the entries of the matrix

1 1 22 .
a; =n;n, (Xj—xl.)+n].ni (Xj—xl.)forlsz,]sN




Radial Basis functions -- projection to tangent plane

4 In the case of the sphere, we could construct
u:R’—= R’
This resulted in a very poorly conditioned matrix

4 Instead, the 3D icosahedral grid points are projected into a 2D
plane tangent to the sphere

4 And solve for the coefficients in the 2D plane




Radial basis functions -- stencil

4 Stencils are defined at cell corners and cell edges (purple points):
- corners use |5 edge points

- edges use |9 (or |8 at pentagons) edge points




Radial basis functions -- practical stuff

4+ A Mathematica code computes the coefficients only once and stores
to a netCDF file

4 To compute a 3D vector involves 3 dot products




Radial basis functions -- error

4+ Given an analytic test case plot the Leo-norm error

Hxappx Xtrue

error = max{

)

4 With input data defined tangent and normal to cell walls

4 The plots show the 3D reconstruction at:
- cell corners (red lines)

- cell edges (blue lines)

reconstruction from tangent data

reconstruction from normal data
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Radial basis functions -- structure of the error

Reconstruction at corners: Reconstruction at edges:
- little structure from the grid - more structure from the grid
- opposing directions - error only in tangent direction
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Conclusions

4 The use of RBFs offers a dramatic improvement over the previous
approximation of 3D fields.

4 RBFs provide a tool that could be used to improve other parts of the
model, e.g.

- finite-difference operators based on Gauss’ theorem could more
accurately approximate the line integral along walls of a given control
volume

- filtering to remove computational mode




