Topographically Bound Balanced Motions

Deriving a PV Invertibility Principle

- Modeling assumptions:
 - compressible, stratified fluid on an f-plane
 - inviscid, quasi-hydrostatic, y-independent motions
- Potential vorticity (PV):

$$\frac{DP}{Dt} = 0 \quad \text{where} \quad P = \left(f + \frac{\partial v}{\partial x}\right) \left(-\frac{1}{g}\frac{\partial p}{\partial \theta}\right)^{-1}$$

▶ Far-field flow vanishes:

$$p(x,\theta) \longrightarrow \tilde{p}(\theta) \quad \text{and} \quad P(x,\theta) \longrightarrow \tilde{P}(\theta)$$

Far-field PV:
$$\tilde{P} = f\left(-\frac{1}{g}\frac{\partial \tilde{p}}{\partial \theta}\right)$$

Deriving a PV Invertibility Principle

Including topography:

- geopotential along topography: $\phi_S(x)$
- potential temperature along topography: $\theta_S(x)$
- boundary of massless layer on a theta surface: $x_S(\theta)$
- Massless layer: $\theta_B < \theta < \theta_S(x)$
- Additional assumptions:
 - symmetry of $\phi_S(x)$ and $\theta_S(x)$ about x = 0
 - geostrophic and hydrostatic balance
 - PV is uniform on each isentropic surface above the massless layer

PV Invertibility Principle
$$\frac{\partial v}{\partial x} + \left(\frac{f\theta^2 N^2}{g^2}\right) \frac{\partial \Pi'}{\partial \theta} = 0 \text{ for } x_S(\theta) < x < \infty,$$
$$\left(\frac{f\theta^2 N^2}{g^2}\right) \frac{\partial \Pi'}{\partial \theta} = f \text{ for } 0 \le x < x_S(\theta),$$
$$f \frac{\partial v}{\partial \theta} - \frac{\partial \Pi'}{\partial x} = 0 \text{ for } 0 \le x < \infty, \quad \theta_B \le \theta \le \theta_T$$
Horizontal BC's:Vertical BC's:
$$\begin{bmatrix} v \to 0 \\ \Pi' \to 0 \end{bmatrix} \text{ as } x \to \infty$$
$$\Pi' = 0 \text{ at } \theta = \theta_T,$$
$$f \left(v - \theta \frac{\partial v}{\partial \theta}\right) = \frac{d\phi_S(x)}{dx} \text{ at } \theta = \theta_B$$

Solving the PV Invertibility Principle

• Utilize Fourier integral transforms in x:

	$\hat{v}(k,\theta) = (2/\pi)^{1/2} \int_0^\infty v(x,\theta) \sin(kx) dx,$							
	$v(x,\theta) = (2/\pi)^{1/2} \int_0^\infty \hat{v}(k,\theta) \sin(kx) dk$							
and	nd							
	$\hat{\Pi}(k,\theta) = (2/\pi)^{1/2} \int_0^\infty \Pi'(x,\theta) \cos(kx) dx,$							
	50							

Transformed PV Invertibility Principle							
 Fourier transform of the elliptic problem: 			$k\hat{v} + \left(\frac{f\theta^2 N^2}{g^2}\right)$	$\frac{d\hat{\Pi}'}{d\theta} =$	$F(k, \theta),$		
			$f {d \hat v \over d heta} +$	$k\hat{\Pi}' =$	0		
with boundary			$\hat{\Pi}' = 0$	at	$\theta = \theta_T,$		
condition	S	$f\left(\hat{v}-\right)$	$\left(\theta \frac{d\hat{v}}{d\theta}\right) = -k\hat{\phi}_S(\theta)$	k) at	$\theta = \theta_B$		
where	$F(k,\theta) = (2/\pi)^{1/2} \int_0^{x_S(\theta)} \left(f + \frac{\partial v}{\partial x}\right) \cos(kx) dx$						
(measure of "absolute isentropic vorticity in the mtn.")							

Special Cases

Balanced wind and mass fields are forced in two ways:
by F(k, θ) and by φ̂_S(k)

• Trivial case:
$$\begin{cases} F(k,\theta) = 0\\ \hat{\phi}_S(k) = 0 \end{cases} \} \Longrightarrow \begin{cases} \hat{v}(k,\theta) = 0\\ \hat{\Pi}'(k,\theta) = 0 \end{cases}$$

Special Case	$F(k, \theta)$	$\hat{\phi}_S(k)$
 Flat topography Variation of θ along bottom boundary 	$\neq 0$	= 0
 Nonzero topography (Eliassen 1980) No variation of θ along bottom boundary 	= 0	$\neq 0$

Summary & Conclusions

- ▶ The SALLJ and Coastal LLJ are not separate entities
- We anticipate that a balanced response to diabatically heated topography can explain such jets
- We have confirmed Eliassen's solutions for isentropic mountains
- Massless layers are a necessary ingredient in this approach
- Generalization of these results to the sphere and the use of more realistic topography will allow for more direct comparison with observations
- Concerning Knowledge Transfer, these analytical solutions can form the basis for the comparison of GCM solutions having a variety of horizontal and vertical discretizations