Wetland Methanogenesis and Heat Flux

Estimation of methane respiration and oxidation, as well as latent and sensible heat with a saturated area derived from the topographic index.

Parker Kraus

The Topographic Index of TOPMODEL

- Hydraulic gradient is equal to the slope.
- Spatially uniform hydraulic conductivity, exponentially decreasing with depth.

Elevation (m)
ABOVE 1000
975 - 1000
950 - 975
925 950
900 - 925
875 - 900
850 - 875
825 - 850
800 - 825
775 - 800
750 - 775
BELOW 750

ln(a/tanß)

Saturated Area

Methanogenesis

 $F_{CH_4} = -k_{CH_4ox} \cdot Q_{10ox} \left(\frac{\left(\frac{T(t) - T_0}{10} \right)}{10} + k_{CH_4resp} \cdot SatArea(hist(\Gamma), vol_{H_2O}) \cdot Q_{10resp} \right) \left(\frac{\left(\frac{T(t) - T_0}{10} \right)}{10} + k_{CH_4resp} \cdot SatArea(hist(\Gamma), vol_{H_2O}) \cdot Q_{10resp} \right) \right)$

- Flux equals the sum of two Arrhenius-type equations representing methane respiration and oxidation.
- Could add third, distinguishing between saturated and unsaturated respiration.
- Estimates of Q_{10resp} commonly range from 2-9, nine is an enormous value, I've heard of people using values of 100, even 1,000.
- Q_{10resp} may be variable within the observed temperature range.

References

- 1. Ambroise et al. 1996 Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity. *Water Resources Research* **32**, 7, 2135-2145.
- 2. Baker et al. 2003 Simulated and observed fluxes of sensible and latent heat and CO₂ at the WLEF-TV tower using SiB2.5. *Global Change Biology* **9**, 1262-1277.
- 3. Curie et al. 2007 Geomorphological methods to characterize wetlands at the scale of the Seine watershed. *Science of the Total Environment* **375**, 59-68.
- 4. Gedney & Cox 2004 Climate feedback from wetland methane emissions. Geophysical Research Letters **31**, L20503.
- 5. Prigent et al. 2007 Global inundation dynamics inferred from multiple satellite observations, 1993-2000. *Journal of Geophysical Research* **112**, D12107.
- 6. Werner et al. 2003 Regional-scale measurements of CH₄ exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest. *Global Change Biology* **9**, 1251-1261.