

Representation of the Intraseasonal Variability over the Eastern Pacific ITCZ in Climate Models

Xianan Jiang & Duane Waliser

Joint Institute for Regional Earth System Science & Engineering (JIFRESSE) / UCLA Jet Propulsion Laboratory, California Institute of Technology

Collaborators: Daehyun Kim (Columbia U.), Ming Zhao (GFDL), U.S. CLIVAR MJO Working Group, and Modeling Centers

Funded by: NOAA Climate Program Office - CPPA Program

Introduction

Standard deviation of intraseasonal bandpass filtered rainfall (Northern Summer)

10-90 day filtered

Regional Impacts of ISV over the Eastern Pacific

Variances of the EEOF modes of TRMM rainfall over the EPAC

Evolution of 40-day ISV Mode

Shading: Rainfall Vectors: QuikSCAT sfc wind

Local expression of MJO (cf. Maloney et al; 2007);

 Enhanced convection corresponding to westerly wind anomalies;

Jiang and Waliser (2008)

Jiang and Waliser (2009)

Participating models

Model (group)	Horizontal Resolution -AGCM	Vertical Resolution (top level)-AGCM	Cumulus parameterization	Integration	Reference
CAM3.5 (NCAR)	1.9º lat x 2.5º lon	26 (2.2hPa)	Mass flux (Zhang & McFarlane 1995)	20 years 01JAN1986-31DEC2005	Neale et al. (2007)
CAM3z (SIO)	T42(2.8°)	26 (2.2hPa)	Mass flux (Zhang & McFarlane 1995)	15 years 29JAN1980-23JUL1995	Zhang and Mu (2005)
CFS (NCEP)	T62(1.8°)	64 (0.2hPa)	Mass flux (Hong & Pan 1998)	20 years	Wang et al. (2005)
CM2.1 (GFDL)	2º lat x 2.5º lon	24 (4.5hPa)	Mass flux (RAS; Moorthi & Suarez 1992)	20 years	Delworth et al. (2006)
ECHAM4/OPYC* (MPI via PCMDI)	T42(2.8°)	19 (10hPa)	Mass flux (Tiedtke 1989; Nordeng 1994)	20 years	Roeckner et al. (1996), Sperber et al. (2005)
GEOS5 (NASA)	1º lat x 1.25° lon	72 (0.01hPa)♪	Mass flux (RAS; Moorthi & Suarez 1992)	12 years 01DEC1993-30NOV2005	To be documented
SNU-AGCM (SNU)	T42(2.8°)	20 (10hPa)	Mass flux (Numaguti et al. 1995)	20 years 01JAN1986-31DEC2005	Lee et al. (2003)
SPCAM (CSU)	T42(2.8°)	26 (3.5hPa)	Superparameterization (Khairoutdinov & Randall 2003)	19 years 010CT1985-25SEP2005	Khairoutdinov et al. (2005)
HIRAM HIRAM_lores (GFDL)	0.5° lat x 0.6° lon 2.0° lat x 2.5° lon	32 (4.5hPa)	Mass flux (Bretherton et al. 2004)	19 years 01JAN1990-31DEC2008	Zhao et al. (2009)

Courtesy of MJO Working Group

Kim et al. 2009

Summer (JJAS) mean rainfall

STDs of 10-90-day summer (JJAS) rainfall

Pattern correlations between GCM simulated and observed First & Second EEOF of rainfall

Jiang et al. 2010

TRMM/NCEP2 CFS SNU SPCAM HIRAM HIRAM-lores 30N - + + day -9 15N ellin. 1110 F EQ-~~~~~~~~ 120 30N day -6 15N EQ-- 20 20 ***** 30N · day -3 15N · 4 6 4 4 * * * * 1119AAAAAA * * * * * * * * 11110 ××1111× EQ-30N · day 0 15N 2/1/11/11/11 * * EQ-٠ - 64 30Nday 3 15N 11 2 2 4 422 EQ +* 30N · day 6 15N 2-2-3-3 EQ 120W 100W 80W 120W 100W 80W 120W 100W 8ÓW 100W 8ÓW 120W 100W 8ów 120W 100W 8ÓW 120W 2m/s mm/day

Evolution of Rainfall & 850mb wind associated with 40-day mode

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4

Eastward propagation associated with 1st ISV mode over the EPAC

(5°N-15°N)

Northward propagation associated with 1st ISV mode over the EPAC

(130°W-90°W)

mm/day

3.5

3

2.5

2

1.5

1

0.5

-0.5

-1.5 -2

-2.5

-3

-3.5

-1

-4-3.5-3-2.5-2-1.5-1-0.50.5 1 1.5 2 2.5 3 3.5 4

Northward propagation associated with 2nd ISV over the EPAC

(130°W-90°W)

Summaries

- While it remains challenging for GCMs in faithfully representing both of the two ISV modes over the EPAC including their amplitude, evolution patterns, and periodicities, encouraging simulation results are also noted. In general, SPCAM and GFDL HIRAM exhibit relatively superior skills in representing both of the two ISV modes.
- While model physics are found to be critical, sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive in realistically capturing the ISV over the EPAC, particularly for the QBM mode.

Some references

- Jiang, X., and D. E. Waliser, 2008: Northward propagation of the subseasonal variability over the Eastern Pacific Warm Pool. *Geophys. Res. Lett.*, **35**, L09814, doi: 10.1029/2008GL033723.
- Jiang, X., and D. E. Waliser, 2009: Two dominant subseasonal variability modes of the eastern Pacific ITCZ, *Geophys. Res. Lett.*, 36, L04704, doi:10.1029/2008GL036820
- Jiang, X., and coauthors, 2010: Simulation of the intraseasonal oscillation over the Eastern Pacific ITCZ in climate models, *Climate Dynamics*, under revision.