Improving Turbulence and Cloud Representation...

...Without Breaking the Bank

Peter A. Bogenschutz and Steven K. Krueger

University of Utah, Salt Lake City, Utah

Winter CMMAP Team Meeting Berkeley, CA January 12, 2011

Multiscale Modeling Framework

Embedded cloud resolving model (CRM) is System for Atmospheric Modeling (SAM)

CRM typically run with 4 km horizontal grid size and in two-dimension configuration

What can we "get" out of a 4 km grid spacing?

Cloud Resolving? (a simple example)

Just add cumulus clouds

Snapshot cloud condensate mixing ratio of trade-wind cumulus regime from high-resolution simulation (z = 600 m)

Black lines denote boundaries of CRM type grid spacing (~ 4 km)

Snapshot cloud condensate mixing ratio of trade-wind cumulus from LES (z = 600 m)

Friday, January 14, 2011

Cumulus in Current MMF Configuration

Not suggesting SAM is a deficient model...This is characteristic behavior of coarse-grid low-order closure CRMs, in general

- Occurrence of shallow cumulus underpredicted in MMF (Zhang et al. 2008)
- Shallow clouds that do form are too optically thick (Marchand et al. 2010)
 - Hence, shallow cumulus in MMF represented as scattered sheets of stratocumulus (Cheng and Xu 2008)
- Shallow clouds in CRM simulations of SAM are formed as a result of cancellation of errors
 - Inadequate turbulence representation & "all or nothing" condensation
- Better representation is needed, but we want to keep the cost minimal!

Multiscale Modeling Framework

Not a new problem!

- Representation of shallow clouds in GCMs has long been the bane of climate modelers
- MMF offers new avenues to improve shallow cloud representation in GCMs
- Problem now focuses on improving cloud representation in coarse-grid CRMs (i.e. deep convection permitting models) rather than in highly parameterized GCMs
 - Should be easier now.... right?

Outline

- LES :
 - Description of LES benchmarks
 - a priori tests
 - Description of new closure
- CRM :
 - *a posterori* test of the new closure
- GCM :
 - How does new closure perform within the MMF?

LES Simulations

• Our (large domain) LES simulations used for *a priori* and *a posteriori* testing include:

Unified Approach to Cloud Representation

Figures from Larson et al. (2002)

Assumed PDF Approach

- Larson et al. (2002) and Golaz et al. (2002) propose a new kind of unified closure
- Assume a functional form of a triple joint PDF $P(w, \theta_l, q_t)$
- Can obtain:
 - SGS cloud fraction and liquid water
 - higher order moments (i.e. liquid water flux, needed for buoyancy flux calculation)
- Requires information of several turbulent moments not provided by standard SAM:

$$\overline{\theta_{l}^{'2}}, \overline{q_{t}^{'2}}, \overline{w^{'2}}, \overline{w^{'2}}, \overline{w^{'}\theta_{l}^{'}}, \overline{w^{'}q_{t}^{'}}, \overline{q_{t}^{'}\theta_{l}^{'}}, \overline{w^{'3}}$$

Assumed PDF Method

 a priori studies (Larson et al. 2002, Bogenschutz et al. 2010) show that triplejoint PDFs based on the double Gaussian form can represent shallow and deep convective regimes fairly well for a range CRM of grid box sizes

For BOMEX shallow cumulus regime, from Bogenschutz et al. (2010) Correlation with retrieved variables from LES

a priori PDF test for Deep Convection

evolution of the temporally and horizontally averaged profiles of the non-precipitating cloud condensate from GATE

From Bogenschutz et al. (2010)

Don't Break the Bank!

- Typically requires the addition of several prognostic equations into model code (Golaz et al. 2002, Cheng and Xu 2006, 2008) to determine turbulent moments
- Second-order moments diagnosed using simple formulations based on Redelsperger and Sommeria (1986) and Bechtold et al. (1995)
- Third-order moment diagnosed using algebraic expression of Canuto et al. (2001)
- The study of Cheng et al. (2010) suggest that simple closures appear to function well for boundary layer cloud regimes given the proper amount of SGSTKE can be predicted
- All diagnostic expressions for the moments are a function of SGSTKE
- So how well do coarse-grid CRMs predict SGS TKE?

... pretty poorly, actually...

From RICO (shallow precipitating cumulus), for 2D simulations using a variety of coarse horizontal grid sizes and dz=100 m.

Dotted black line is SGS TKE diagnosed from LES for a 3.2 km grid (i.e. "truth")

... and this translates to where it counts

SGS turbulence problem

- SGSTKE in coarse-grid CRM underrepresented for two reasons:
 - SGS liquid water flux is neglected in buoyancy flux calculation
 - Needed as an important source of turbulence
 - Length scale definition results in an overtly dissipative model
 - Needed to maintain/balance turbulence

$$\frac{\partial \overline{e}}{\partial t} = -\overline{u_j} \frac{\partial \overline{e}}{\partial x_j} + \delta_{i3} \frac{g}{\overline{\theta_v}} \left(\overline{u'_i \theta'_v} \right) - \overline{u'_i u'_j} \frac{\partial \overline{u_i}}{\partial x_j} - \frac{\partial \overline{u'e}}{\partial x_j} - \frac{1}{\rho} \frac{\partial \overline{u'_i p'}}{\partial x_i} - c_k \frac{\overline{e}^{3/2}}{L}$$

"Offline" Tests of PDF-SAM

Standard SAM vs. PDF-SAM

- Standard SAM
 - I.5 TKE closure
 - Length scale specified as dz (except in stable grid boxes)
 - "all-or-nothing" condensation
 - Buoyancy flux diagnosed from moist Brunt Vaisala frequency

- PDF-SAM
 - I.5 TKE closure
 - Length scale diagnosed
 - SGS condensation
 - Buoyancy flux computed as function of liquid water flux
 - No additional prognostic equations added to SAM code (only ~1.1 times more expensive)

$$\overline{w'\theta'_v} = \overline{w'\theta'_l} + \frac{1-\epsilon_o}{\epsilon_o}\theta_o \overline{w'q'_t} + \left[\frac{L_v}{c_p}\left(\frac{p_o}{p}\right)^{R_d/c_p} - \frac{1}{\epsilon_o}\ell_o\left[\frac{w'q'_l}{w'q'_l}\right]\right]$$

LES: dz = 40 mdx = 100 m 2D-CRMS: dz = 100 m dx = 800 m to 25.6 km

LES: dz = 40 mdx = 100 m

2D-CRMS: dz = 100 m dx = 800 m to 25.6 km

dx = 800 m to 25.6 km

Stratocumulus

24 hour diurnally varying simulation. Ocean Weather North ship Lagrangian case moves over slightly warmer SST. Interactive shortwave & longwave radiation.

> LES: dx=dy=50 m, dz=20 m2D-CRMs: dx=3.2 km, dz=20 m

Friday, January 14, 2011

Stratocumulus (Day One of Transition)

Friday, January 14, 2011

(a) Benchmark Retrieved SGS Fluxes

Transition Case SGS Heat Flux

 $\overline{w'h'_L} (W/m^2)$ $\Delta x = 3.2 \text{ km}$

MMF Testing

- PDF-SAM shows it can represent shallow convection with fidelity and is fairly robust to changes in vertical and horizontal grid spacing
- Computational cost is kept to a minimum
- How does it perform within the MMF?

Preliminary Test of Closure Within MMF

- Code implemented to the embedded CRM within the MMF
- SGS cloud fraction and liquid water content passed to radiation code (computed on the CRM grid every 15 minutes)
- SPCAM & SPCAM-PDF run in T42 configuration with 30 vertical levels (embedded CRM: dx = 4 km)
- Preliminary results from June, July, August (JJA) simulation (with one month spin-up)
- In general, SPCAM-PDF improves the representation of cumulus clouds within the MMF
- However, representation of stratocumulus off western continental coasts not improved (very likely due to inadequate vertical grid spacing)

Ratio SGS/Total vertical flux of total water mixing ratio $\overline{w'q'_t}$

At 860 hPa

Shallow cloud circulations appear to be more realistically represented in SPCAM-PDF

SPCAM Low Cloud Amount SPCAM-PDF Low Cloud Amount 0.6 90N 90N 0.6 60N 0.5 60N 0.5 30N 0.4 30N 0.4 0.3 0 0.3 С 30S 0.2 **30**S 0.2 60S 0.1 60S 0.1 90S-90S 0 0 120E 120W 60E 120E 60E 180 60W 180 120W 60W Ω Ω Ω Ω

Friday, January 14, 2011

Summary

- PDF-SAM (likely to be coined "DHOC" in publication) represents a new type of model:
 - Diagnostic higher-order closure with assumed PDF for condensation and turbulence
 - Focus is on improvement of SGSTKE
- Can represent boundary layer clouds and deep convection realistically with minimal additions to computational cost
- Representation of cumulus in MMF is improved, stratocumulus still severely underrepresented
- Simple code that has promise for easy portability to other explicit-convection models (i.e. WRF, GCRMs)

Future Work

- Longer MMF simulations must be performed/tested
 - How does it compare with IPHOC (Cheng and Xu, 2010)?
- Coupling of PDF-SAM with double moment or PDF-based microphysics schemes (Cheng and Xu 2009)
- Coupling of PDF-SAM with other simple turbulence schemes (i.e. two-part scheme of Moeng et al. 2010)
- Coupling of PDF-SAM with models to better represent stratocumulus topped inversions when dz is coarse
 - Boundary layer reconstruction (Grienier and Bretherton 2001)
 - CRM with adaptive vertical grid (Marchand and Ackerman 2010)