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SUMMARY AND CONCLUSION

® GCMs and GCRMs should be unified so that we can freely choose

a resolution without changing formulation of model physics.

e The unified parameterization can
achieve the unification through
a relatively minor modification of

the existing parameterizations.

® The third approach that bridges
conventional GCMs and the Q3D

MMF can also be constructed.
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OPENING A ROUTE FOR UNFIED PARAMETERIZATION

o : the fractional area covered by all convective clouds in a grid cell.

e Conventional parameterizations assume ¢ << 1, either explicitly or implicitly.

® Then the temperature and water vapor to be predicted are essentially those for
the cloud environment.
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® But, if cloud occupies the entire cell, there is no “environment” within the cell.

A key to open this route is eliminating the assumption of 6<<1.




THE GOAL OF THE UNIFIED PARAMETERIZATION

To formulate the vertical eddy transport

in a way that is applicable to any value of ¢ includingo=1.
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SCATTER PLOTS OF wWq—W{q AGAINST o(1—0) WITH d,, = 16 km
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® The ratio of the scatter to the mean value does not significntly depend on sigma.

® The ratio depends on the averaging length as expected.
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(a) shear case
e Diagnosed directly through Lh.s.
o Diagnosed through r.h.s.
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(b) non-shear case
® Diagnosed directly through l.h.s.

O Diagnosed through r.h.s.
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Simulations of Extratropical Cyclogenesis
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A dynamical core based on the unified (UN) system has been

constructed. The preliminary results are very encouraging

Outline

B A descriptive comparison of the unified (UN), quasi-hydrostatic (QH)
and anelastic (AN) dynamical cores

= Continuous equations

= [mportant aspects of discretization of the UN dynamical core
m Simulations of extratropical cyclogenesis on midlatitude - and f- planes
m A comparison of the results obtained by the three models

® Conclusions




Comparison of the S-Plane Results (Cont.)

m Surface low pressure in the AN simulation does not get as deep as that in the UN

and QH simulations
Surface qh-pressure (mb) for UN and QH (and surface pressure (mb)
for AN) and potential temperature (K) for day 15
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Progress Report

Research Objective |:
Development of a Q3D MMF

The quasi-3D multi-scale modeling framework (Q3D MMF) is
an attempt to include 3D cloud effects in a GCM
without necessarily using a fully three-dimensional

global cloud-resolving model (GCRM).

Joon-Hee Jung and Akio Arakawa

January 2011 CMMAP Team Meeting




A Q3D algorithm based on a “gappy”
grid has been developed and evaluated

Publications:

Jung, J.-H., and A. Arakawa, 2010:
Development of a quasi-3d multiscale modeling framework: motivation,
basic algorithm and preliminary results.

J.Adv. Model. Earth Syst., 2, Art. #1 |, 3| pp.

A.Arakawa, |.-H. Jung, and C.-M.Wau:
Toward unification of the multiscale modeling of the atmosphere

submitted to Atmos. Chem. Phys.

A.Arakawa, J.-H. Jung, and C.-M.Wu:

Toward unification of general circulation and cloud-resolving models
submitted to ECMWF conference proceeding




Completed Tasks

® Forming a primary structure of Q3D MMF: coded & tested

(coupled structure of GCM and CRM, I/O, individual channel calculation,
elliptic solver, handling channels located in different direction, and so on)

© Inclusion of Q3D algorithm: almost coded & tested
(channel coupling, bg field calculation, ghost point calculation, and so on)

Near Future Tasks

o Completion of the parallelized code

o Test of the code through a complete simulation
(serial vs. parallelized calculations, efficiency check, and so on)




Continued development
of the Vector Vorticity Model
on the lcosahedral Geodesic Grid
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The Vector-Vorticity Dynamical Core (VVDC) on the Icosahedral Grid

4 The VVDC was originally designed for a
Cartesian grid by Jung and Arakawa (2008)

Jung, J.-H., and A. Arakawa, 2008:
A Three-Dimensional Anelastic Model Based on the
Vorticity Equation. Mon. Wea. Rev., 136, 276-294.
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- Horizontal (green arrows) is defined
at cell edges and layer interfaces

- Vertical (purple arrows) is defined
cell corners and within a layer

4 The model predicts Potential
Temperature (red dots) defined
at layer interfaces




Rising bubble test case with the VVDC sphere

4 This animation shows cross
section of temperature through
a rising warm bubble

4 Contour interval 0.1 K
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Radial basis functions -- motivation

4 Current improvements to the model focus on aspects that are unique

to the icosahedral grid
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Radial basis functions -- error

4+ Given an analytic test case plot the L»-norm error

)

4+ With input data defined tangent and normal to cell walls
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error = max{‘

4 The plots show the 3D reconstruction at:
- cell corners (red lines)

- cell edges (blue lines)

reconstruction from tangent data reconstruction from normal data
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Conclusions

4 The use of RBFs offers a dramatic improvement over the previous
representation of the 3D fields.

4 RBFs can be used to improve various parts of the model.




