Cloud Response to Climate Change in SP-CAM

Christopher S. Bretherton Atmospheric Sciences and Applied Mathematics University of Washington

with help from Peter Blossey, Matt Wyant, Marat K.

Photo courtesy Rob Wood

SP-CAM cloud response studies

Dauntingly expensive to run fully coupled SP-CAM realistically forced by time-varying anthropogenic greenhouse gases and aerosol emissions.

Wang et al. 2011 (aerosol effects in PNNL-MMF) and Cristiana's new $4xCO_2$ study are good first cut toward this.

Traditional AGCM feedback assessment

- 1. Run AGCM to equilibrium over climatological SSTs
- 2. Calculate implied net energy flux (Qflux) into the ocean
- 3. Construct a slab ocean model with this Qflux and climatological ocean mixed layer depth
- 4. Suddenly double CO_2 (radiative forcing G) and run AGCM+SOM to equilibrium (20-50 yrs). Mean surface air temperature increase ΔT_{eq} is the climate sensitivity
- 5. Feedback analysis used to understand ΔT_{eq} in terms of radiative effects of changes in T, q, snow, clds...

Some wrinkles

- 10-20 year run needed (longish for SP-CAM)
- Notion of 'cloud feedback' problematic
 Climate feedbacks usually understood as being on global mean surface temperature <T_s>

Clouds can respond to a CO_2 change even $\langle T_s \rangle$ does not change through radiative and circulation changes.

Thus cloud response to a step CO_2 change combines a 'fast' adjustment and a slow 'T-mediated' adjustment which had different physical mechanisms (Gregory and Webb 2008).

Fast response of clouds to radiative changes

- Transient behavior of coupled GCM runs in which CO₂ is suddenly doubled shows a quick response of the clouds *before* the climate warms which explains some of the ultimate 2xCO₂ cloud feedback.
- Quick increase in SWCF (less cloud) after 2xCO₂.

Adjustment cartoon

Cloud adjustment to step 2xCO₂ is significant

	Clear-Sky LW (FLN)	Clear-Sky SW (F _{SN})	Cloud LW (FLC)	Cloud SW (FSC)	Net (F)
CCSM3.0	-0.28 ± 0.15	0.02 ± 0.28	-0.39 ± 0.12	-0.13 ± 0.14	-0.78 ± 0.34
CGCM3.1(T47)	0.45 ± 0.23	-0.17 ± 0.33	-0.16 ± 0.14	0.86 ± 0.19	0.98 ± 0.54
CGCM3.1(T63)	0.46 ± 0.23	0.02 ± 0.25	-0.22 ± 0.16	1.04 ± 0.43	1.30 ± 0.66
GISS-ER	_	_	_	_	0.01 ± 0.42
MIROC3.2(medres)	-0.57 ± 0.27	0.13 ± 0.24	-0.11 ± 0.09	1.02 ± 0.41	0.47 ± 0.69
MRI-CGCM2.3.2	-0.15 ± 0.36	-0.42 ± 0.25	-0.26 ± 0.17	0.54 ± 0.32	-0.29 ± 0.55
UKMO-HadGEM1	-0.62 ± 0.34	-0.39 ± 0.32	-0.24 ± 0.19	0.57 ± 0.30	-0.67 ± 0.69
Ensemble	-0.12 ± 0.48	-0.14 ± 0.23	-0.23 ± 0.10	0.65 ± 0.44	0.15 ± 0.80

Table 1. Semi-Direct Forcing Components Induced by $2 \times CO_2$ for Various Slab Ocean GCMs^a in units of Wm⁻²

(Andrews and Forster 2008)

Suggests quick decrease in both low and (to lesser extent) high cloud. Fast adjustments are about 20% of equilibrated cloud response to $2xCO_2$.

Geographical pattern of fast cloud adjustment is fairly complex and model-dependent, like for T-mediated cloud change.

Cloud response work at UW

We have separately analyzed SP-CAM fast and T-mediated adjustment in shorter model runs of a few years. For comparison with Cristiana's work, I summarize this work:

• T-mediated cloud response

Uniform +2K SST increase (Wyant et al. 2006, 2009) 0.5 yr spinup + 3 yr analysis period

• Fast cloud response

4xCO₂ with specified SST (Wyant et al. 2012)

0.5 yr spinup + 2 yr analysis period

• CGILS column-cloud change cases with SP–SAM (new)

+2K cloud/CRF changes

- SWCF trends dominate net \Rightarrow low cloud response.
- Low cloud increases: subtropics, summer polar.
- Δ SWCF = -1.0 [-0.1] W m⁻² K⁻¹ [] = masking correction Δ LWCF = 0.1 [+0.45] W m⁻² K⁻¹ (Soden et al. 2004) Net cloud radiative feedback = -0.55 W m⁻² K⁻¹ (negative!)

Patterns of CAM-SP +2K Δ lowcld $\propto \Delta$ EIS over oceans

- Cloud increase in subtropical margins due to broadening of warm tropical belt aloft (opposite response to most GCMs)
- Reduced low cloud over low-latitude land

SP-CAM 4xCO₂ but fixed SST

Table 1: Tropical means for the control simulation and changes due to the $4xCO_2$ perturbation. (*Note: for ω_{500} , the percentage change is normalized with the tropical-mean absolute value of the control ω_{500} .)

	Control			Δ_{4xCO_2}			
	Ocean	Land	Total	Ocean	Land	Total	Total %
ω_{500}	0.93	-1.98	0.20	0.71	-2.98	-0.22	* -0.8
Low Cloud Fraction	0.303	0.154	0.265	-0.0011	0.0056	0.0006	0.2
Middle Cloud Fraction	0.060	0.095	0.069	-0.0032	0.0057	-0.0010	-1.4
High Cloud Fraction	0.173	0.168	0.172	-0.0042	0.0203	0.0020	1.2
Total Cloud Fraction	0.433	0.310	0.402	-0.0038	0.0184	0.0018	0.4
LWP (g m $^{-2}$)	82.3	64.3	77.8	-2.9	3.9	-1.2	-1.6
IWP (g m ^{-2})	24.7	25.5	24.9	-0.8	3.1	0.1	0.6
Rainfall (mm day $^{-1}$)	3.61	2.39	3.30	-0.25	0.25	-0.13	-3.8
LH Flux (W m^{-2})	135.1	46.1	112.7	-5.8	1.5	-3.9	-3.5
SH Flux (W m^{-2})	13.9	58.8	25.2	-1.0	0.0	-0.7	-3.0
SWCF (W m^{-2})	-63.9	-44.3	-59.0	1.3	-2.5	0.3	0.6 (0.4
LWCF (W m^{-2})	30.8	28.1	30.1	-2.2	1.5	-1.2	-4.1 (-0.5
Net LW up TOA (W m^{-2})	253.6	257.4	254.6	-7.0	-10.9	-8.0	-3.1
Net LW up Surf.(W m ^{-2})	53.5	81.8	60.6	-2.7	-5.3	-3.3	-5.5

Over land: More rain, clouds, ascent

Over ocean: Less rain, clouds, ascent

Over full tropics: Less atmos. radiative cooling, less cld, no net cloud feedback.

SST fixed, but land heats up due to enhanced greenhouse effect

Figure 1: Annual mean change in surface temperature for SP-CAM due to 4xCO₂.

 Δ CO2 increases surface downward LW everywhere

Land surface warms

- $4xCO_2 \rightarrow \sim 10 \text{ W m}^{-2} \text{ more LW}_{dn}$ at low cloud top.
 - → Less PBL radiative destabilization
 - → Warmer free overlying free troposphere
 - → Less entrainment
 - ➔ Shallower inversion

SP-CAM cloud response synopsis

Fast adjustment:

- Shift of cloud, ascent from ocean to land
- Lower marine subtropical trade inversion

T-mediated:

- Subtropical and polar low cloud increase
- Negative global cloud feedback unlike CMIP3 GCMs

CGILS: CFMIP/GCSS Intercomparison of Large-eddy and Single-column models

- Focuses on three points along the GCSS Pacific Cross-section.
- Points range from shallow, wellmixed boundary layer near coast to deeper trade cumulus boundary layer well offshore.

 $\omega(p,lat) = \Omega(lat) \omega_0(p)$

S6: Trade Cu

S6 time evolution

Synopsis of CGILS tests

- SP-SAM captures basic character of cloud in all 3 cases
- Too much cloud in all three cases
- +2K sensitivity tests affected by grid-locking in SP-SAM and suggest positive low cloud feedback, unlike full model run!
- As Kuan-Man, Anning, my group and others have noted, vertical velocity variance is not resolved in SP-SAM.
- An SP-SAM with a better subgrid scheme (e.g. IPHOC) would probably perform better, at least for control case.