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TWO CRM SIMULATIONS USED IN THIS STUDY

Snapshots of vertical velocity w at 3 km height

With Shear Without Shear

Model : The vorticity equation model of Jung and Arakawa (2008)

Horizontal domain size : 512 km           Horizontal grid size : 2km

Data used : last 2 or 12 hrs of two 24-hr simulations with 20-min intervals
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SIMULATED  VERTICAL  EDDY  TRANSPORT
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COMPARISONS OF EDDY TRANSPORT OF h AT DIFFERENT LEVELS
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DIVERGENCE  OF  THE  HORIZONTAL  TRANSPORT  OF  h 

z = 0.5 km z =   2  kmz =   1  km

Shear case d= 8 km

Divrgence of the eddy transport is much smaller than

that of the total transport in both means and standard deviations.
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Outstanding problems in conventional parameterization

(e.g., determination of cloud properties, cloud spectrum,

cloud organization, . . .) remain important in UP. 


