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THE PARAMETERIZATION PROBLEM IN NUMERICAL MODELING

The need for parameterization arises from

the artificial truncation of atmospheric processes.
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GRID-SCALE TRUNCATION SUBGRID-SCALE

PROCESSES . PROCESSES

Parameterization in numerical modeling

is an inherently resolution-dependent problem.




UNIFIED PARAMETERIZATION

— An attempt to break through the “GRAY ZONE" —
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JOINT USE OF PARAMETERIZATION AND EXPLICIT PREDICTION

.

® In mesoscale modeling, the importance of jointly using parameterization
and explicit prediction of hydrometeors has been well recognized :
e.g.,
Full physics approach (Zhang et al. 1988)

Hybrid approach (Molinari and Dudek 1992)

Cascading approach (Gerard 2007)

® Approaches similar to these are now often taken even in GCMs for selected

species of hydrometeors.

\

Resolution-dependent formulation of the subgrid dynamical response

to cloud microphysics remains challenging.




TWO CRM SIMULATIONS USED IN THIS STUDY

Model : The vorticity equation model of Jung and Arakawa (2008)

Horizontal domain size : 512 km

Horizontal grid size : 2km

Data used : last 2 or 12 hrs of two 24-hr simulations with 20-min intervals

Snapshots of vertical velocity w at 3 km height

With Shear

Without Shear
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ANALYSIS OF THE RESOLUTION-DEPENDENT STATISTICS
OF THE CRM-SIMULATED DATA

The original domain (512 km) used for CRM simulations

is divided into sub-domains of same size.

Examples
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The size of subdomains is interpreted as the GCM grid size.



FRACTIONAL AREA COVERD BY CONVECTVE UPDRAFTS, ©

Measured by the fractional number of grid points in a sub-domain

that satisfy w>0.5 m/s.

Ensemble average of ¢ over all sub-domains wtho> 0
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[G<< 1 can be a good approximation ONLY for low reso/utions}




RESOLUTION DEPENDENCE OF

ENSEMBLE-AVERAGE VERTICAL TRANSPORT OF MOIST STATIC ENERGY

m/s K
. SHEAR CASE
z=3km h : Deviation of moist static energy
from a reference state
21 (): Average over all grid points
in the sub-domain
1- < >: Ensemble average over all
sub-domains with ¢ > 0.
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As the resolution increases, the total transport tends to increase

while the eddy transport for small d tends to decreease.




RESOLUTION DEPENDENCE OF

ENSEMBLE-AVERAGE VERTICAL TRANSPORT OF MOIST STATIC ENERGY

m/s K
o SHEAR CASE
z=3km h : Deviation of moist static energy
from a reference state
21 ( ) : Average over all grid points
in the sub-domain
1- < >: Ensemble average over all
sub-domains with ¢ > 0.
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IMPORTANT!
Parameterization is a formulation of the eddy transport,

NOT that of the total transport.




RESOLUTION DEPENDENCE OF

ENSEMBLE-AVERAGE VERTICAL TRANSPORT OF MOIST STATIC ENERGY
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There is no qualitative differene between the shear and non-shear cases.




THE G—DEPENDENCE OF

ENSEMBLE-AVERAGE VERTICAL TRANSPORT OF MOIST STATIC ENERGY

m/s K

o SHEAR CASE

oddy transport
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Even with the same resolution,

the relative importance of eddy transport strongly depends on G.




VERTICAL EDDY TRANSPORT
BY HOMOGENEOUS CLOUDS/ENVIRONMENT

Most conventional parameterizations assume that
clouds and the environment are horizontally homogeneous.

Continue to use this assumption to start with.

For a thermodynamic variable 1, we can derive

W' = 0(1 _ O)AW Ay A ( ): cloud-environment difference

If Aw Ay is independent of o,

the o-dependence of w'y” is through G(l — 0).




SIMULATED VERTICAL EDDY TRANSPORT

BY HOMOGENEOUS CLOUDS/ENVIRONMENT

For each sub-domain,

replace all w ¢ with wc,

replace all h ¢ with he,

the same for the environment.
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The dependence on o

through o(1 - o)

is well supported.
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COMPARISONS OF EDDY TRANSPORT OF h AT DIFFERENT LEVELS
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THE EFFECT OF MULTIPLE CLOUD-STRUCTURE / CLOUD-TYPE
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CLOSURE ASSUMPTION

CONVENTIONAL ADJUSTMENT SCHEMES

( A ( L \
Determine cloud properties w_ and h Estimate the transport (wh)adj
assuming that grid-point values required for the adjustment
represent the environment (i.e., 0<<1) to a neutral state.
\ ) \ l )
( A

Assume that
the eddy transport estimated with o << 1

is totally responsible for the adjustment.

\ y,
( \
(Wh) adj Not used, but self-contradictory because
To be consistent, o = _ _
(WZ _ W)(hz _ h) o << 1 does not hold for large (wh)adj.
\ )




CLOSURE ASSUMPTION

UNIFIED PARAMETERIZATION (SINGLE CLOUD TYPE)

e When G is larger, w, —w and h, —h

are smaller.

® Then the magnitude of the eddy transport
is limited.

—» Relaxed adjustment

We choose

(Wh)g
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sampling problem

This ¢ automatically satisfies 0 <o <1

including c — 1 as (ﬁ)adj —> 00,



SPECTRAL REPRESENTATION OF CLOUDS

Suppose that we use w at cloud base to classify cloud types (as in Chikira 2010).

. W'_\If' = Z(AWiA\Ifi) O;— ZAWi Gz-z‘,A\IH G; A: cloud-env. difference
We can drive i i i

o i : cloud type
A generalization of Wy’ =c(1—-0)Aw Ay
[ We have to consider possible overlap ofclouds}
~ o

B . s The problem of
'_'}.’.—* is more likely than |_ 2% - — P

—, . — cloud organization

Ny

A challenge!

internal structure different cloud types



DIVERGENCE OF THE HORIZONTAL TRANSPORT OF h

Shear case

Total transport -~

- —--. z=05km R

Divrgence of the eddy transport is much smaller than

that of the total transport in both means and standard deviations.

d=8 km

*1 Eddy transport

2.5

2

1.57

-

05 Std Dev

sSBwmw «

. =™ Mean S
————————
0 0.2 0.4 06 08

z= 1 km z= 2 km

1.0



SUMMARY AND CONCLUSIONS

The unified parameterization (UP) generalizes conventional parameterization

including the transition to explicit simulation of cloud processes.

UP eliminates the assumption of 6<<1, distinguishing

the cloud environment from the grid-cell mean.

Eddy transport in UP decreases as 6 1 and, therefore,

the adjustment to a neutral state is relaxed for large ©.

UP determines o for each realization.

Outstanding problems in conventional parameterization
(e.g., determination of cloud properties, cloud spectrum,

cloud organization, ...) remain important in UP.




