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Outline

• Status of the Vorticity-Divergence Dynamical Core with the 
unified system of equations (Arakawa and Konor).

• Update on the continuing grid optimization saga

• First steps of a MPI/OpenMP hybrid model



Warm Bubble Test



Extratropical cyclone

• Surface Potential
Temperature

• Days 8,9,10 and 11

Day 8 Day 9

Day 10 Day 11



Since the last meeting

• Improved efficiency of the multigrid elliptic solvers

• Merging of my code with the SVN repository code. Anyone in the world 
can check out the unified model. 



• The grid optimization algorithm 
positions the grid point to improve 
the convergence rate of the finite-
difference operators.

• Number of independent variables is 
shown in the table.

• Since the last meeting we have tried 
to extend the optimization to grid 13.

• Grid 13 has proven itself difficult to fit 
onto any normal computer.

grid resolution
number of 

independent 
variables

(9) 2,621,442 (15.64km) 32,768

(10) 10,485,762 (7.819km) 131,072

(11) 41,943,042 (3.909km) 524,288

(12) 167,772,162 (1.955km) 2,097,152

(13) 671,088,642 (0.997km) 8,388,608

Grid Optimization Saga
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Grid Optimization Saga

• These figures show the error (L2-norm error and infinity-norm error) in the Laplace 
operator as a function of grid number.

1) solid line is with 128-bit numbers
2) dashed line is with 64-bit numbers. This is the extension to grid 13.

• red dashed line shows 1st-order convergence. 
blue dashed line shows 2nd-order convergence.



Parallel domain decomposition

• The global grid is partitioned into 
subdomain blocks of cells. 

• Blocks are assigned to MPI processes 
and boundary information is transmitted 
between processes with MPI messages.

• For example, 642 cells partitioned into 40 
blocks.



Define parallel efficiency

• Each subdomain block requires information 
from neighboring subdomains to fill ghost 
cells.

• We can define a parallel efficiency to be

• Larger parallel efficiency is better.  
More useful work is done per ghost cells.

• For example, pe as a function of grid 
resolution and number of processes

Yellow cells belong to the local process

Blue cells are ghost cells filled from neighboring process

parallel efficiency = number of local cells
number of ghost cells

640 2560 10240

9 (15.64km) 16 8 4

10 (7.819km) 32 16 8

11 (3.909km) 64 32 16



Parallel Scaling
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• What is the relation between parallel efficiency 
and parallel scalability?



An MPI/OpenMP hybrid model

• One possible strategy:

1) Use MPI parallelism (distributed memory) for the physical domain decomposition 
    such that pe ≥ 16 
2) With OpenMP (shared memory) to gain greater parallelism within each MPI task

• Consider 1 node on hopper
which has 24 cores

• The same shared memory 
parallelism ideas apply
to GPUs
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An MPI/OpenMP hybrid model

• The 2D multigrid is a good place to test the MPI/OpenMP strategy.

• A stack of 2D problems where there are no dependencies across the vertical dimension.  
The OpenMP parallelization is on the vertical loop.

• Letʼs look at four experiments:

Grid 9
640 MPI tasks

time = 8.06s

Grid 9
640 MPI tasks

4 OpenMP Threads
2560 total processes

time = 3.57s

ideal time = ∼2s

Grid 9
2560 MPI tasks

time = 2.93s

ideal time = ∼2s

Grid 9
640 MPI tasks

6 OpenMP Threads
3840 total processes

time=3.26s

ideal time = ∼1.33s

• Somewhat disappointing results



A parallel tridiagonal solver using OpenMP

• A tridiagonal system has the form
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• Code with dependencies in the vertical direction will need to be modified to 
allow parallelism.

• In particular we need to solve tridiagonal systems in the vertical direction

1) Implicit vertical diffusion processes

2) In the 3D solver in the unified system



• The conventional algorithm (Numerical Recipes) does not parallelize

• Each result depends on the previous result

subroutine solve_tridiag(a,b,c,v,x,n)
 
        bp(1) = b(1)
        vp(1) = v(1)
 
        !The first pass (setting coefficients):
firstpass: do i = 2,n
         m = a(i)/bp(i-1)
         bp(i) = b(i) - m*c(i-1)
         vp(i) = v(i) - m*vp(i-1)
        end do firstpass
 
         x(n) = vp(n)/bp(n)
        !The second pass (back-substition)
backsub:do i = n-1, 1, -1
          x(i) = (vp(i) - c(i)*x(i+1))/bp(i)
        end do backsub
 
end subroutine solve_tridiag

A parallel tridiagonal solver using OpenMP



• The algorithm know as cyclic reduction has greater inherent parallelism.

• Consider a 7×7 system of equations:

b1x1 + c1x2 = d1
a2x1 + b2x2 + c2x3 = d2
a3x2 + b3x3 + c3x4 = d3
a4x3 + b4x4 + c4x5 = d4
a5x4 + b5x5 + c5x6 = d5
a6x5 + b6x6 + c6x7 = d6

a7x6 + b7x7 = d7

ʹ′b2x2 + ʹ′c2x4 = ʹ′d2

ʹ′a4x2 + ʹ′b4x4 + ʹ′c4x6 = ʹ′d4

ʹ′a6x4 + ʹ′b6x6 = ʹ′d6

ʹ′ʹ′b4x4 = ʹ′ʹ′d4

• The linear combinations of equations are independent and can proceed in parallel.

A parallel tridiagonal solver using OpenMP



• Letʼs look at four experiments:

The old algorithm

Gaussian elimination 
and back substitution

time = 7.4×10-3s

• Again, somewhat disappointing results

A parallel tridiagonal solver using OpenMP

The new algorithm

1 OpenMp thread

time = 1.8×10-2s
(2.5 time slower)

The new algorithm

4 OpenMp thread

time = 7.8×10-3s
(1.06 time slower)

The new algorithm

6 OpenMp thread

time = 6.9×10-3s
(0.93 time slower)



progress, conclusions and future work

• I think I have some ideas why the OpenMP is not working too 
well.  On smaller problem sizes, the overhead associated with 
forking to create new threads is swamping the parallel gains.


