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Outline

« Status of the Vorticity-Divergence Dynamical Core with the
unified system of equations (Arakawa and Konor).

« Update on the continuing grid optimization saga

* First steps of a MPI/OpenMP hybrid model
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Extratropical cyclone

¢ Surface Potential

Temperature
* Days 8,9,10 and | |




Since the last meeting

* Improved efficiency of the multigrid elliptic solvers

« Merging of my code with the SVN repository code. Anyone in the world
can check out the unified model.




Grid Optimization Saga

e The grid optimization algorithm
positions the grid point to improve
the convergence rate of the finite-
difference operators.

* Number of independent variables is
shown in the table.

* Since the last meeting we have tried
to extend the optimization to grid |3.

e Grid |3 has proven itself difficult to fit
onto any normal computer.

number of
grid resolution independent
variables
(9) 2,621,442 (15.64km) 32,768
(10) 10,485,762 (7.819km) 131,072
(11) 41,943,042 3.909km) | 524,288
(12) 167,772,162 (1.955km) | 2,097,152
(13) 671,088,642 (0.997km) | 8,388,608




Grid Optimization Saga

* These figures show the error (L2-norm error and infinity-norm error) in the Laplace
operator as a function of grid number.

1) solid line is with 128-bit numbers
2) dashed line is with 64-bit numbers. This is the extension to grid 13.

* red dashed line shows 1st-order convergence.
blue dashed line shows 2nd-order convergence.
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Parallel domain decomposition

* The global grid is partitioned into
subdomain blocks of cells.

* Blocks are assigned to MPI processes
and boundary information is transmitted
between processes with MPl messages. |

* For example, 642 cells partitioned into 40
blocks.




Define parallel efficiency

Each subdomain block requires information
from neighboring subdomains to fill ghost
cells.

We can define a parallel efficiency to be

number of local cells

parallel efficiency =
number of ghost cells

Larger parallel efficiency is better.

More useful work is done per ghost cells.

For example, pe as a function of grid
resolution and number of processes

Yellow cells belong to the local process
Blue cells are ghost cells filled from neighboring process

640 2560 10240
9 (15.64km) |6 8 4
10 (7.819km) 32 16 8
11 (3.909km) 64 32 16




Parallel Scaling

time (s)

* What is the relation between parallel efficiency C_ pe=32
and parallel scalability? C__ ) pe=lé6
(D pe=8
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An MPI/OpenMP hybrid model

* One possible strategy:

1) Use MPI parallelism (distributed memory) for the physical domain decomposition

such that pe = 16

2) With OpenMP (shared memory) to gain greater parallelism within each MPI task

» Consider 1 node on hopper
which has 24 cores

e The same shared memory
parallelism ideas apply
to GPUs
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An MPI/OpenMP hybrid model

« The 2D multigrid is a good place to test the MPI/OpenMP strategy.

» A stack of 2D problems where there are no dependencies across the vertical dimension.

The OpenMP parallelization is on the vertical loop.

 Let’s look at four experiments:

( )
Grid 9 Grid 9
. Grid 9 640 MPI tasks 640 MPI tasks
Grid 9 2560 MPI tasks 4 OpenMP Threads 6 OpenMP Threads
640 MPI tasks , 2560 total processes || 3840 total processes
. time = 2.93s
time 28088 ideal time = ~2s time = 3.57s Hmel
ideal time = ~2s ideal time = ~1.33s
N >

J

« Somewhat disappointing results




A parallel tridiagonal solver using OpenMP

« Code with dependencies in the vertical direction will need to be modified to

allow parallelism.

* In particular we need to solve tridiagonal systems in the vertical direction

1) Implicit vertical diffusion processes

2) In the 3D solver in the unified system

 Atridiagonal system has the form

[ b, ¢ 0 || X, -
a, b, ¢ Xy
a; by ¢ X3

a, b, c, Xy

as by Xs
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A parallel tridiagonal solver using OpenMP

* The conventional algorithm (Numerical Recipes) does not parallelize
* Each result depends on the previous result

subroutine solve_tridiag(a,b,c,v,x,n)

bp(l) = b(1)
vp(l) = v(1)

!The first pass (setting coefficients):
firstpass: do i = 2,n

m = a(i)/bp(i-1)

bp(i) = b(i) - m*c(i-1)

vp(i) = v(i) - m*vp(i-1)

end do firstpass

x(n) = vp(n)/bp(n)
!The second pass (back-substition)
backsub:do i = n-1, 1, -1
x(i) = (vp(i) - c(i)*x(i+1l))/bp(i)
end do backsub

end subroutine solve_tridiag




A parallel tridiagonal solver using OpenMP

* The algorithm know as cyclic reduction has greater inherent parallelism.

« Consider a 7x7 system of equations:

bx1+clx2=dl\
d,

a,x, + b;x; + c,x, =d, /bxz+CZX4 dé\
2 3 37V4 \

, / ’ 1" "
— > — —
a,x, +b,x, +c,x, =d, / a,x, +byx, + c,x, =d,—— > b/x, =d,
asX, +bsXs + C5Xg = d ST—o__

! ! !
d > agx, +bx, =d,

=d

a,x, +b,x, = d,

* The linear combinations of equations are independent and can proceed in parallel.




A parallel tridiagonal solver using OpenMP

 Let’s look at four experiments:

( )

The old algorithm

Gaussian elimination
and back substitution

time = 7.4x103s

-

The new algorithm
I OpenMp thread

time = 1.8%102s
(2.5 time slower)

~

The new algorithm
4 OpenMp thread

time = 7.8%103s
(1.06 time slower)

~

-

The new algorithm
6 OpenMp thread

time = 6.9%10-3s
(0.93 time slower)

* Again, somewhat disappointing results




progress, conclusions and future work

* | think | have some ideas why the OpenMP is not working too
well. On smaller problem sizes, the overhead associated with
forking to create new threads is swamping the parallel gains.




