Do low clouds amplify internal fluctuations of the Pacific climate?

Amy Clement Rosenstiel School of Marine and Atmospheric Sciences University of Miami

Collaborators:

Pedro DiNezio (RSMAS); Clara Deser (NCAR); Robert Burgman (RSMAS); Ben Kirtman (RSMAS); Brian Soden (RSMAS); Gabe Vecchi (NOAA-GFDL); Joel Norris (Scripps); Katinka Bellomo (RSMAS); Honghai Zhang (RSMAS)

Drought in southern US is linked to Tropical Pacific Sea Surface Temperatures

Figure 1. Average sea surface temperature (SST) anomalies (°C) for the week centered on 28 December 2011. Anomalies are computed with respect to the 1971-2000 base period weekly means (Xue et al. 2003, J. Climate, 16, 1601-1612).

Meteorological drought can persist for decades

20th century and paleoclimate records provide ample evidence for decades-long, and even 'Mega' droughts

What caused the trend in Pacific SST in the last several decades? How long will this trend continue?

What do we need to understand, observe, model?

Our approach:

Decompose complex models into a set of relatively few processes

Methodology

- Climate models with different degrees of coupling with the ocean
 - 1. Forced with climatological SST

Uncoupled

2. Coupled to a SLAB ocean mixed layer (50 m)

Thermodynamical coupling but No interactive ocean dynamics

3. Coupled to a full ocean GCM

Fully coupled

 13 different AGCMs- multi-model mean fields show structures that are not sensitive to the details of parameterizations

Clement et al. (*J. Climate* 2011)

"El Nino-like" pattern is the dominant mode of variability without dynamical coupling to ocean

Multi-model mean regression of surface temperature on Walker Index**

Note: Positive and negative fluctuations are equally likely

**stippling shows areas where < 10 out of 13 models agree in sign- i.e not robust

AGCM-slab multi-model mean (13 models) regression of SST on Walker index

multi-dataset: SST regression on unf. SO-index

SST unf. SO-index 30°N **0**° 30°S 20 120°E 150°E 150°W 120°W 90°W 180° ∆SST (K) -0.4 -0.2 0.0 0.2 0.4

Observed regression of SST on normalized Walker index

AGCM-slab multi-model mean (13 models) regression of precip on normalized Walker index

Observed regression of GPCP precip (Adler et al. 2003)

AGCM-slab multi-model mean (13 models) regression of SLP on Walker index

HadSLP, SLP, regression on ant 30-index

Walker index spectra from 13 AGCM-slab models

Latent heat flux damps SST, but clouds amplify so effective damping rate is small

Models with strong cloud feedback have large SO variance

Zhang and Clement (in prep.)

Observed decadal cloud changes that coincide with weaker Walker circulation

Clement, Burgman, Norris (2009)

Low-level cloud forcing reinforces the pattern (i.e. causes it to persist)

Burgman et al. (in prep.)

A developing warm event in the SE Pacific?

Figure 1. Average sea surface temperature (SST) anomalies (°C) for the week centered on 28 December 2011. Anomalies are computed with respect to the 1971-2000 base period weekly means (Xue et al. 2003, J. Climate, 16, 1601-1612).

Summary points

Realistic El Nino-like variability can arise on interannual to decadal timescales without coupled ocean dynamics.

Low-level clouds appear to play a role in the persistence of Pacific climate anomalies

Are climate models underestimating the persistence of Pacific climate anomalies and their associated impacts?