The Transition from Shallow to Deep Convection in the GIGALES

CMMAP Team Meeting Physical Processes Breakout Wed. Jan 11th 2012 Ian Glenn Steve Krueger

GIGA-LES

- Large Eddy Simulation using SAM
- GATE Idealized steady forcing
- 2048x2048x256 grid points (~1 billion)
- I00m horizontal, 50m to 100m vertical in troposphere

Cloud Water Path

Shallow Convection

Cloud Water Path at t = 4 hours

Congestus

CWP at t = 5.75 hours

Transition

CWP at t = 7 hours

Deep Convection

CWP at t = 12 hours

Profiles of MSE

- An entraining plume is less dilute for a lower entrainment rate
- Lin and Arakawa 1997
 Fig. 8

FIG. 8. The vertical profiles of in-cloud moist static energy for different cloud types predicted by the λ -version spectral cumulus ensemble model of the Arakawa–Schubert cumulus parameterization. The corresponding fractional rate of entrainment for each cloud type is indicated at the top of the profile (unit: % km⁻¹). The domain and

Profiles of MSE

 After Kuang and Bretherton 2006

FIG. 11. Same as Fig. 9, except for the deep cumulus regime and for a bin size of 0.5 K in h/cp.

Deep Convection at 12 hrs

The transition over time

Shallow Convection

Congestus

Vigorous Transition

Deep Convection

Precipitation Rate Profiles

- High precipitation rate is sometimes the definition of "deep convection" (Fletcher and Bretherton 2010)
- Show peak rates occur at 7 hours into the simulation
- The depth through which the precipitation is falling increases over time
- And the rate increases dramatically, suddenly

Question concerning transition

 Does simulation show shallow Cu's precipitation needed to evaporate and form cold pools before vigorous deep convection can occur?

Question concerning transition

•Or does simulation show shallow Cu's moistening of upper levels

•Followed by strong over shooting deep convective heavy precipitation, then cold pools and stabilized deep convection

•Or something else?

Precipitation Flux

 Time-Height diagram of precipitation rate at each level (mm/day)

 Recall Maximum Surface Precipitation Rate at 7 hours

Precipitation Flux

Precipitation Flux (mm / day)

Precipitable Water

Precipitation Flux

 Is the early PW trend due to large scale prescribed tendency?

Mass Flux in Cloudy Cells: Note Negative Flux at 7 Hrs

Mass Flux in Cloud (kg / m² / s)

Wednesday, January 11, 2012

Cold Pools Timing

 The low level mass flux between 6-8 hours shows the formation of the cold pools

 Another way is to look at the variance of the MSE in the downdrafts

SFC Rain Rate = 2 mm/day

Sfc Rain Rate = 31 mm/day

Sfc Rain Rate = 14 mm/day

MSE Variance below 5 km

Variance of MSE in Downdrafts (K^2)

Height (km)

Downdraft MSE Variance at SFC

Mean MSE Variance Below 500m

Transition

 What happens to the shallow Cu after deep convection forms?

• CWP shows their disappearance

Transition

CWP at t = 7 hours

Deep Convection

CWP at t = 12 hours

Transition

 Since mass flux and vertical velocity is necessarily zero averaged over the domain at any level

 Vigorous cumulus updrafts induce environmental subsidence

Shallow convection is supressed

Cu Induced Subsidence

Cloud Induced Env. Subsidence Averaged over Env. (m/s)

Cold Pools Timing

• The evaporation of precipitation is linked to cold pool formation (Khairoutdinov et al. 2009 Fig. 7)

Evaporation

Precipitation Flux

Precipitation Flux (mm / day)

Summary: Cold Pools

 High precipitation rate is sometimes the definition of "deep convection" (Fletcher and Bretherton 2010)

 Highest precipitation rates precede cold pool formation

 In GIGA-LES, vigorous deep convection precedes cold pool formation

Summary: Vigorous Deep Convection

- Occurs after moistening of mid-layers
- Has highest precipitation rates
- Begins to inhibit shallow Cu by the deep Cu induced subsidence
- Precedes steady state cold pool regime
- The transition from shallow to deep convection is complete in GIGA-LES

References

- Fletcher, J. K. and Bretherton, C. S.: Evaluating boundary layer-based mass flux closures using cloud-resolving model simulations of deep convection, J. Atmos. Sci., 67, 2212– 2225, 2010.
- Khairoutdinov, M. F., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz and D. A. Randall, (2009): Large-eddy simulation of maritime deep tropical convection. *J. Adv. Model. Earth Syst.*, 1, Art. #15, 13 pp., doi:<u>10.3894/JAMES.2009.1.15</u>
- Kuang, Z., and C. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 1895–1909.
- Lin, C.-C., and A. Arakawa, 1997: The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining-plume model. J. Atmos. Sci., 54, 1044– 1053.