CGILS Update

Peter Blossey & Chris Bretherton (UW)
Minghua Zhang (StonyBrook)
CGILS Collaborators

Background: CGILS

 Recently, CGILS, an intercomparison effort, looked at cloud feedbacks in three low cloud regimes in LES and single-column models.

CGILS LES: Response to warming and subsidence

SWCRE = Shortwave
Cloud Radiative Effect
= SWCF = Shortwave
Cloud Forcing

- Reasonable agreement on control cloud SWCRE
- With moist adiabatic warming (CTL→P2), all LES thin cloud layer.
- A reduction in subsidence leads to a thicker cloud (P2→P2S). Also seen in observations by Myers & Norris (2012, submitted).
- ∆SWCRE for composite climate change (CTL→P2S) has uncertain sign.

UW LES: Response to a variety of climate perturbations

- Explore the cloud response to individual climate perturbations.
- Note that response to warming similar with or without diurnal cycle.
- Then, evaluate response to CMIP3 2xCO₂ multi-model mean perturb.
- •A lot of cancellation, but net 20 W m⁻² reduction in SWCRE for CMIP3 perturbations.

Mechanisms of Sc Cloud Response

Turbulence driving

More emissive FT (more CO_2 or H_2O)

Less turbulence production by top cooling or sfc flux. or lower wind speed Less entrainment. Sc lowers, thins.

Moisture gradient

Drier RH or warmer SST

Larger surface – FT moisture difference allows thinner cloud to sustain same entrainment. Sc thins.

Inversion strength

FT warms more than SST

Stronger inversion reduces entrainment. Sc top and base lower. Sc may thicken (S11).

Taking next steps from CGILS

- I. Have LES models all run cases (\$12,\$11,\$6) with 4xCO2 and with composite changes based on the CMIP3 multi-model mean.
 - Steady forcings w/diurnally-averaged insolation.
- 2. Have a few LES models and the SCMs run longer (multi-month) simulations at trade cumulus location (S6) using transient forcings (ECMWF July).
 - SCM simulations with steady forcings suffered from grid-locking, making interpretation of climate sensitivity quite difficult.
 - Transient forcing (e.g., Brient & Bony, 2012) can produce a cloud climatology similar to model and may make comparison between LES and SCM easier.
 - May also facilitate comparison to observations.

