Sensitivity of Low Cloud Transitions to Aerosol and Climate Perturbations

Peter Blossey, Chris Bretherton, Chris Jones (UVV) Sungsu Park (NCAR)

Thanks to Irina Sandu & Bjorn Stevens for building transition case, to Marat Khairoutdinov for SAM, and to a NOAA CPT for funding.

Low Cloud Transitions

- Air masses associated with subtropical stratocumulus decks are advected over warmer SSTs by trade winds.
- Breakup of cloud is important for albedo both locally and globally.

Two studies related to cloud transitions in the Northeast Pacific

How do low clouds Northeast Pacific and their transitions respond to

I. changes in aerosols?

2. climate perturbations?

Plan:

Study these along Lagrangian trajectories in the Northeast Pacific using Large Eddy Simulations and Single Column Models.

I. Sensitivity to Changes in Aerosol (Modeled as changes in cloud droplet number concentration, Nd)

Introduction: Aerosol Impacts on Clouds

- Aerosols can impact clouds through
 - cloud brightening (1st indirect effect) or
 - modification of cloud lifetime (2nd indirect effect).

More aerosol thins nearly nonprecipitating Sc

- Ackerman et al (2004) found that stratocumulus clouds only thicken with increasing cloud droplet concentration N_d until surface precipitation rate becomes small (<0.1 mm d⁻¹).
- Due to enhanced entrainment of dry air with higher N_d.

 Bretherton et al (2007): Higher N_d → Less sedimentation
 → more efficient entrainment, due to increased evaporation of liquid water in the entrainment zone.

Partial Cancellation of Aerosol Indirect Effects

- Wood (2007) looked at the cancellation of aerosol indirect effects in mixed-layer model (MLM) simulations of marine Sc.
- Over short times and for thinner clouds, the second indirect effect nearly canceled the first. R_{IE} is their ratio (2nd to 1st).
- The sensitivity to aerosol perturbations decreased when the baseline Nd increased from 100 to 200.
- Caldwell and Bretherton (2009, also a MLM study) found a weaker sensitivity to aerosol perturbations and attributed this to low LWP.

LES Study of Nd Sensitivity in Sc

- In large eddy simulations (LES), Sandu et al (2008) found that daytime LWP changes due to increased aerosols worked against the Twomey effect.
- Shallow boundary layer (based on FIRE), well-mixed at night in Nc=600 case.
- Decouples during day in both cases and on second night in Nc=50 case.

Our Study: Case Setup

- Stratocumulus to trade cumulus transition: a composite case from the Northeast Pacific (Sandu, Stevens & Pincus, 2010; Sandu & Stevens, 2011).
 Summertime conditions (JJA2006-7).
- Simulation follows composite Lagrangian trajectory over warmer SSTs with fixed subsidence.
- Finish after 3 days before breakup of capping Sc.

LES results

- Large eddy simulation model: System for Atmospheric Modeling, v. 6.8 (SAM, Khairoutdinov & Randall, 2003). Lx=Ly~4.5km. Δx=Δy=35m, Δz=5m from ~0.5-2.5km.
- Microphysics: Khairoutdinov & Kogan (2000), fixed N_d=25, 100, 400 cm⁻³.
- Radiation: RRTMG w/cloud droplet effective radius computed from LWC and N_d, assuming σ_g =1.2. Includes diurnal cycle.

Cloud thickness and albedo response to N_d

• Optical depth of an Sc layer $\tau \sim LWP^{5/6}N_d^{1/3}$.

40% decrease in LWP $\leftarrow \rightarrow$ 4xN_d.

- $N_d 25 \rightarrow 100 \text{ cm}^{-3}$: 35% daytime LWP decrease, little albedo increase.
- $N_d 100 \rightarrow 400 \text{ cm}^{-3}$: little daytime LWP decrease, Twomey effect reigns.

Entrainment and Drizzle

- Entrainment efficiency increases with N_d (Bretherton et al. 2007).
- Drizzle evaporating below cloud base is significant for $N_d = 25 \text{ cm}^{-3}$.
- Note that Sandu & Stevens (2011) found that a simulation w/N_d=33 cm⁻³ had surface precip (~0.3 mm d⁻¹) and had smaller LWP than N_d=100 cm⁻³.
- Uncertainty in microphysical representations may be large enough to support both results. We will look into this.

Can SCAM5 reproduce this behavior?

Cloud fraction

- SCAM5 is the single-column version of the CAM5 atmospheric GCM.
- 30-level SCAM5 not bad, except too little cloud on the last day.

But 2nd indirect effect opposite to LES!

• SCAM5 has **thicker** cloud with increasing N_d (i. e. more positive dLWP/dN_d than LES; similar to CAM5-MACM difference that led stronger aerosol indirect effect in CAM5 (Wang et al. 2011).

...suggests single-column modeling might illuminate and maybe help fix the AIE difference.

Concentrate on focus period: well-mixed nocturnal Sc layer

Three possible effects:

- I. Cloud droplet sedimentation
- 2. Precipitation
- 3. Radiation sensitivity to N_d

SCAM5 sensitivity studies

- Default CAM5 has cloud droplet sedimentation at a predicted rate w_{sed} in stratiform microphysics, but no other entrainment-sedimentation feedback
- NoSed: Cloud droplet sedimentation off in stratiform microphysics.
- EntrSed: Add 'missing' entrainment-sedimentation feedback by decreasing cloud enhancement to entrainment rate by LES-tuned factor (Bretherton et al 2007)

$$exp(-a_{sed}w_{sed}/w_*)$$
, $a_{sed} = 9$ (LES-tuned), $w_* = convective velocity ~ 1 m s^{-1}$

- Addition of stratiform sedimentation reduces LWP in all cases
- Addition of entrainment-sedimentation feedback brings a little LWP back
- But $N_d = 25$ vs. 400 LWP difference as large with no sedimentation.
- They **are** removed when we also suppress stratiform precipitation.

So evaporating drizzle is a likely culprit

- Look at t = 0.5 day (first night).
 Significant evaporating drizzle for Nd = 25.
- Loss of q₁ during each timestep comparable to 400-25 Δ q₁.
- Liquid water rained out of cloud in a timestep reduces LWP?
 Seems not, because results are changed little by halving timestep from 1200 to 600 s.
- So we've isolated the problem, and issures related to precipitation in SCAM, but these do not explain the different Nd sensitivity.

No surface precip at this time

Conclusions of Nd Sensitivity Study

- LES of marine low cloud transition show interesting sensitivity to cloud droplet number concentration (Nd), with thicker cloud for smaller Nd.
- This seems to be related to the effects of both sedimentation and drizzle on entrainment.
- SCAM5 shows the opposite sensitivity to Nd, with thicker cloud at higher Nd.
- Another LES model (Sandu & Stevens, 2011) shows a similar sensitivity to SCAM5, but that model dries the boundary layer through surface precipitation, while SCAM5 doesn't precipitate at the surface.
- We're still working to understand this sensitivity.
- Note that AM3-CLUBB (Guo et al, 2011) does a good job of reproducing Nd sensitivity of Sc clouds from Ackerman et al (2004).

Sensitivity to Climate Perturbations

Contour: Background 500hPa Pressure Velocity (Pa-s-1)

Soden & Vecchi (2011):

- Scatter in total cloud feedback dominated by low cloud.
- Cloud feedbacks in low cloud transition regions are wellcorrelated to global mean.

Background

- Bony & Dufresne (2006): differences in tropical cloud response came mainly from shortwave in subsiding regions.
- Many modeling studies of low cloud feedbacks in a single-column setting :
 - MLM: Caldwell & Bretherton (2009), Caldwell et al (2012)
 - LES/CRM: Xu et al (2010), Blossey et al (2009), Rieck et al (2012)
 - SCM: Zhang & Bretherton (2009), Brient & Bony (2012).
- Some modeling studies have suggested mechanisms for low cloud response:
 - Caldwell & Bretherton: subsidence/lapse rate feedback leads to thicker cloud in Sc regions when SST change is uniform in tropics.
 - Rieck et al: Warming leads to a drier, less cloudy cloud layer in trades.
 - Brient & Bony: Increase in lower tropospheric moist static energy gradient leads to reduced cloudiness in trades.

Case Setup

- Modify Sandu & Stevens (2011) Lagrangian transition case.
- Subsidence fixed aloft, but near-surface divergence decreases with time over a layer of increasing depth.
- Four Climate Perturbations (no changes to wind speed, FT RELH):
 - P4 (warming): SST+4K, moist adiabatic warming aloft,
 - **4xCO2,**
 - dEIS (stability[↑]): SST+2K locally, SST+4K in deep tropics. Stronger than expected changes based on CMIP3 models (ΔEIS<~IK),
 - P4 4x (combined warming and 4xCO2).
- Adapt subsidence aloft in each case so that free tropospheric energy budget is in approximate balance (P4 subsidence ~ 0.9 CTL subsidence).

Results: Cloud Fraction

• CTL simulation is broadly similar to previous simulation.

- Cloud thins in P4 simulation relative to CTL. More thinning in P4 4x.
- P4, 4xCO2 runs more decoupled on first night than CTL, dEIS.

Results: BL depth, stability, subsidence

- CTL deepens more despite stronger subsidence.
- Increased stability restrains deepening of dEIS.
- During first night, P4 & 4×CO2 have thinner cloud layer than CTL.

Results: LWP, SWCRE

- Warming (P4) leads to thinner cloud.
- Large ∆SWCRE (CTL→ P4) due in part to partial cloud cover (~80-85%), stronger decoupling.
- With increased CO2 (4xCO2), cloud thiner on first full day but mostly recovers on second.
- Increase stability seems to offset warming in dEIS simulation.
- More thinning in combined P4 4x run than in the other runs.

Driving factors in cloud changes

- Full cloud cover breaks down in P4 run, especially during daytime. Moreso in P4 4x.
- Stronger decoupling in P4 run leads to drier cloud layer, thinner cloud.
- More emissive free troposphere leads to weaker BL-integrated radiative cooling in P4, 4xCO2, dEIS → weaker BL turbulence, less entrainment, thinner cloud (for 1st night).
- Cloud changes are weaker on second night, despite persistent difference in rad cooling. In CGILS, cloud response was weaker when all runs were decoupled -- something similar might be at work here.

Cloud changes w/CGILS comparison

- Results are qualitatively consistent with those from CGILS. The surprises are in:
 - the strength of the cloud response in P4 (larger than expected),
 - that changes in radiative cooling have stronger impact on BL height than subsidence changes (e.g., 4×CO2).
 - Similar increases in stability (dEIS) had weaker effect on Δ SWCRE in CGILS.
 - Combined effects of P4 and 4xCO2 changes predict P4 4x results on first full day. Linearity assumption not as good next day when P4 4x has much smaller cloud cover.
 - In a warmer climate, the BL might decouple more readily through deepening-decoupling mechanism of Bretherton & Wyant (1997).

Mechanisms of Sc Cloud Response

Turbulence driving

Drier RH or warmer SST Larger surface – FT moisture difference allows thinner cloud to sustain same entrainment. Sc thins.

Inversion strength

FT warms more than SST

- Stronger inversion reduces entrainment. Sc top and base lower. Sc may thicken (S11).
- Changes from CTL → P4 and CTL → 4xCO2 are similar in turbulence driving, subsidence and inversion strength.
- Suggests that increased moisture gradient is responsible for larger cloud response in P4 simulation.

Conclusions

- Preliminary exploration of climate sensitivity of marine low cloud transitions indicates positive low cloud feedbacks for the conditions studied here.
- Warming and direct effect of CO₂ act to thin cloud, consistent with results seen in CGILS.
- Stability increases offset cloud thinning, though expected EIS changes in subtropics are smaller than simulated here (0.5-1 K).

Future Plans

- These transition simulations don't actually simulate the full breakup of inversion cloud.
- We are constructing a six-day Lagrangian transition case based on the median trajectory of Sandu, Stevens & Pincus (2010).
- We will explore effects of warming, CO2, stability and subsidence changes both separately and together, as in Bretherton et al (2012).
- Simulate case in both LES and single-column models. Will they agree better for perturbations to climate than they do for aerosols?