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Introduction

Many theories have been proposed to explain the Madden-Julian Oscillation (MJO).

Recently, possibility of a new theory called "moisture mode" is under discussion,
which seeks more solid physical basis (e.g. Raymond and Fuchs 2009).

Many observational and modelling studies showed primary importance of free
tropospheric moisture for cumulus convection.

In the theoretical models which gives the moisture mode, cumulus heating depends
on free-tropospheric humidity.

Moisture mode is characterized by "weak temperature gradient balance" (Sobel et
al. 2001) where time derivative and horizontal advection terms of temperature are
negligible compared to other terms.
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» The moisture mode theory seems to be a good thinking way, but is still an ongoing
project in explaining the various observed features of the MJO.

» The formulations for moisture variation in the theoretical models seems to be still
crude and need to be improved.

» It is because current meteorology does not have enough knowledge on how free-
tropospheric humidity varies.
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» This study analyzes MJO-like waves represented by the Chikira-Sugiyama (CS)

cumulus scheme (Chikira and Sugiyama 2010) focusing on how free-tropospheric
moisture varies.

» The CS scheme is characterized by state-dependent entrainment and can represent
the dependence of convection on the free-tropospheric humidity in a relatively
physically reasonable way.



Outline of cumulus scheme
(Chikira and Sugiyama 2010)

» Based on an entraining-plume model

» Lateral entrainment rate vertically varies depending on buoyancy and
updraft velocity following Gregory (2001).

» Updraft ensemble is spectrally represented following the spirit of the
Arakawa-Schubert scheme. But cloud types are represented
according to updraft velocity at cloud base.

» Cloud base mass flux is determined by a method identical to the
prognostic Arakawa-Schubert scheme (originally proposed by Xu
1993).

» Implemented in MIROCS. The result was submitted to CMIP5



» A popular method for analyzing the humidity variation is to use the
vertically integrated moist static energy and Gross Moist Stability
(GMS). (e.g. Peters et al. 2008; Maloney 2009)

» This study proposes another way which gives understanding on how
free tropospheric humidity varies at specific levels.



Experimental design

» The atmospheric component of MIROCS5 with the horizontal resolution of T42
(approximately 250km) and 56 levels

» Climatological SSTs

» 10 years integration after 5-years spin-up



Wheeler-Kiladis diagram for OLR (Symmetric Component)
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Combined EOF of 20-100day bandpass filtered
OLR, U850 and U200 (15S-15N)

Model AVHRR+NCEP (1979-2005)

(a)1st mode (19.96%) (b)1st mode (22.2%)
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Squared coherency
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Phase composite of OLR and horizontal velocity at 850hPa

Model AVHRR+NCEP
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Analysis of moisture variation

Data for comparison

» Outgoing longwave radiation observed by AVHRR (1989-2005)
» ERA-Interim (1989-2005)

Composite method

» Base points of the composites are the minimum values of OLR anomaly bandpass-
filtered between 20-100days in period and 1-5 in wavenumber.



Results

Total water anomaly (from -30-20days mean) [g/kg]
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Total water tendency [g/kg/day]

Vertical advection + All physical processes ( = Total tendency — Horizontal advection)
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Net effect of vertical advection and cloud process moistens the free-troposphere.
Especially its tendency is amplified over the convective region, working as a positive
feedback for the positive moisture anomaly.

Horizontal advection dries the free-troposphere. Especially its tendency is enhanced to
the west of the convective area, which causes the eastward propagation of the field.



Understanding of the total water variation
reduces into two problems

1. Why does the horizontal advection particularly
dry the western side of the convective area?

2. Why does the effect of the vertical advection
plus cloud processes amplify the positive
moisture anomaly?



Analysis of horizontal advection

—~Vu-Vgi=-Vu-V§i+F

horizontal advection
by slow fields

Term generated

F = —Vh . Vq,t — V’h . Vét — V,h . Vq’; by the presence of

fast waves

~ : slow field where Fourier components less than 20 days period are removed out
: Departure from the slow field



—Vu-V§: anomaly [g/kg/day] ~ Model —Vu-V§: anomaly [g/kg/day] ERA-Interim
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Horizontal advection by slow fields dries the free-troposphere around the western
margin of the convective area.

Fast waves tends to dry the free-troposphere over the interior of the convective area.
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The drying around 600hPa is caused by both the U and V advective components.

That in the lower troposphere is caused by the V advective component.



Total water anomaly (from -30-20days mean) [g/kg]
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Horizontal wind field anomaly (m/s; vectors)
and total water (g/kg; shading) at 600hPa

Model ERA-Interim
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Horizontal wind field anomaly is well understood as the Matsuno-Gill pattern as a
response to convective heating of the MJO.

Rossby wave response explains the drying by the meridional wind component in
the western side.



Analysis of vertical advection plus cloud process

Prognostic equation of total water

dq: dq:

=—Vh- VQI — Q) + Seum + Sfall + Sevap
ot dp
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How is the net vertical velocity determined?

Prognostic equation of potential temperature
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Potential temperature tendency anomaly Net vertical velocity anomaly

averaged from -5 to 5 days [K/day] averaged from -5 to 5 days [hPa/hour]
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Upper troposphere:
enhanced stratiform condensation + radiative warming anomaly
— strong upward net vertical velocity anomaly
Lower troposphere:
enhanced evaporative cooling (rain+cloud) > radiative warming anomaly
— weak downward net vertical velocity anomaly



300 1
400 1
500 -
600 -
700 1
800 1
900 1

Total water tendency anomaly [g/kg/day]
15S-5N

20 15 10 4

Net vertical

1000

300
400
500
600
700
800
900

fall in/out

l‘

LN
N i
B |‘|
\

. g Wy
~

4 »

horizontal

advection

-

.

000 ——
20 15 10

§ 0 -5 -10 -15 -20

~~~~~

reevaporation

i

1000

vertical diffusion

——

20 15 10
downdraft

-5 -10 -15 -20




Total water tendency anomaly
averaged from -5 to 5 days [g/kg/day]
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Further interpretation of results
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In the composite mean,
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Balance of potential temperature
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Factors affecting development of MJO

a q t de
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There are at least two factors which affects the development of the MJO.

* Horizontal gradient of moisture in basic field.
* Alpha




Annual mean total water averaged in the free troposphere (850 to 300hPa) [g/kg]
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» Over the eastern Pacific and Atlantic, high values of free-tropospheric humidity is
confined in the narrow band where dry air tends to intrude from the south.

»~ This is unfavorable condition for the development of the MJO and will be one of the
reason that the MJO is suppressed over these regions.
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Overall, alpha in the lower troposphere is more than 1 in the tropics. The
reevaporation of precipitation works as a drying factor.

Alpha is large over land. The lower troposphere tends to be effectively dried by
downward net vertical velocity over land. This is unfavorable condition for the
development of the MJO and consitent with that the MJO is suppressed there.



The effects of each term in the lower troposphere of the convective area

a t g ~ ra
a—q:—Vh-VQt—F+Dqt+Sfall+Of SC+QLd
t

+ (1 — a)Sevap

horizontal horizontal cumulus fall in/out reevaporation of
advection advection  detrainment condensation/ radiation precipitation
by slow field by fast wave evaporation
of cloud < O > O
eastward () 50 ~0 <0 >0 ———
propagation <0

Moistening factors in the lower troposphere over the convective area are positive
anomaly of shallow cumulus detrainment and radiative warming anomaly.

-1

l—q = ﬁ a_h s: dry static energy
0z 0z h: moist static energy
>0 <0

It depends on the vertical gradient of moist static energy whether the reevaporation of
precipitation works as a drying or moistening factor.



Why does shallow convection occur over the convective area
of the MJO together with deep convection?

Correlation of cumulus detrainment with that at 300hPa
over the convective area (-5 to 5 days)
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Composited large-scale mean 0. (white) and @. of the highest cumulus cloud type
(black) averaged over the convective area (-5 to 5 days) [K]
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Even in the convective area of MJO, the profile
of the cumulus Oe is very close to the large-
scale @, . The atmosphere is marginally
unstable against the highest cumulus cloud

type.

The other cloud types with larger
entrainment rates tend to lose buoyancy
earlier and detrain more in the middle and
lower troposphere.
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Summary

Overall features

In the composited MJO, the weak temperature gradient balance is well satisfied.

The net effect of the vertical advection and cloud process moistens the free-
troposphere. Especially its tendency is amplified over the convective area, working as a
positive feedback for the moisture anomaly.

Horizontal advection dries the free-troposphere. Especially its tendency is enhanced to
the west of the convective area, which causes the eastward propagation of the field.

:> All these features support the concept of the moisture mode theory

Horizontal advection

The horizontal advection by slow fields dries the free-troposphere around the western
margin of the convective area. The fast waves tend to dry the free-troposphere over the
interior of the convective area (similar to damping or horizontal diffusion).

Contributors to the larger drying to the west include the greater westerly wind in the
western side and Rossby wave response.



Net vertical velocity

Moisture variation is well understood by introducing net vertical velocity defined by
the sum of large-scale mean vertical velocity and cumulus subsidence.

In the upper troposphere over the convective area, the enhanced stratiform
condensation and radiative warming anomaly lead to the strong upward net vertical
velocity anomaly.

In the lower troposphere, the enhanced evaporative cooling of the cloud and
precipitation is larger than the radiative warming anomaly, resulting in the weak
downward net vertical velocity anomaly.

Moisture variation by vertical advection and cloud process

In the upper troposphere over the convective area, the moistening by the upward net
vertical velocity is larger than the enhanced fall out, resulting in the positive tendency.

In the lower troposphere, the cumulus detrainment and radiative warming anomaly
are the factors of moistening. The reevaporation of precipitation works as a drying
factor by inducing the downward net vertical velocity.

Shallow convection plays an important role not only as preconditioning but even in the
mature phase. This is consistent with the previous studies that the bottom heavy
heating helps moisten the atmosphere (Peters et al. 2008; Kuang 2011).



Factors affecting the development of the MJO

There are at least two factors which affects the development of the MJO, horizontal
gradient of the free tropospheric humidity and alpha represented by the following

formula.
L (36 (%
G\ dp dp

Over the eastern Pacific and Atlantic, the high values of the free-tropospheric humidity
is confined in the narrow band where the dry air tends to intrude from the south. This

is unfavorable condition for the development of the MJO and will be one of the reason
that the MJO is suppressed over these regions.

Since alpha is large over land, the lower troposphere tends to be effectively dried by
downward net vertical velocity there. This is unfavorable condition for the
development of the MJO and may explain why the MJO is suppressed there.



Why shallow convection occurs over the convective area together
with deep convection.

Even over the convective area, the atmosphere is marginally unstable against the
highest cumulus cloud type. This is favorable condition for the shallow convection to
occur in the same timing with the deep convection. It enables to increase the lower-
tropospheric humidity over the convective area and thereby maintains deep
convection.

This fact suggests that the reason for the success of the CS scheme in producing the
better MJO is that the scheme tends to produce shallow convection together with
deep convection.



