On the Stability of the Aerosol-Cloud-Precipitation System

Graham Feingold

NOAA Earth System Research Laboratory, Boulder, Colorado

CMMAP January 23, 2013

Current paradigms for aerosol-cloud interactions in GCMs

- Parameterization of aerosol indirect effects
	- Series of effects: 1st, 2nd... nth
	- lack nuance of real world processes
	- sometimes put into climate models without regard to scale, model *infrastructure*
- Resolution of aerosol-cloud interactions
	- Superparameterization
	- PDF approaches

This Talk

- Explore a *dynamical systems* view of aerosol-cloud interactions
- Detailed modeling of the system with LES and lowdimensional model analogues
- Can low dimensional models play a role in parameterization of aerosol-cloud interactions?

Outline

- The macroscopic view of a system
- Order
- Preferred Modes
- Resilience of Modes
- Transitions between Modes
- Simplified Equation Sets **Attractors**

 $\frac{dx}{dt} = \sigma(y - x)$ $\frac{dy}{dt} = x(\rho - z) - y$ $\frac{dz}{dt} = xy - \beta z$

strength of attractor

Macroscopic Order

Microscopic $=$ individual birds or grains of sand Macroscopic = bird flock or sand dune

Don't need to model every bird or every grain of sand to obtain the emergent properties of the system

Cloud Patterns/Order

MODIS, MISR, GOES images

Patterns: Mesoscale Cellular Convection in Stratocumulus

Open cellular convection

500 km

 Patterns and emergence in atmospheric systems

Closed cellular convection

"Emergence"

 System-wide patterns emerge from local interactions between elements that make up the system

Implication: Complex problems with huge number of degrees of freedom may be amenable to solution with much more simple set of equations

Other examples

Flock behaviour

Numerical simulation of "Rayleigh-Bénard Convection"

Computer simulation of BZ reaction

Oscillatory behaviour in Belousov-Zhabotinskii chemical reactions

Preferred Modes

Open and closed-cells: Self-organization

See also Bretherton et al. 2004; Stevens et al. 2005; Savic-Jovcic and Stevens 2008; Xue et al. 2008; Wang and Feingold 2009

System Equilibria Atmospheric systems prefer certain modes

Non-drizzling, closed-cell mode

Drizzling, open-cell mode

Resilience to aerosol perturbations

Open cells readily revert to closed cells System is not resilient to change

Depth of valley = strength of attractor

Distinct closing of open cells by ship tracks

MODIS image courtesy NASA

Resilience to aerosol perturbations

System is resilient to change

Aerosol/drizzle selects the state

Rearrangement of Open Cells

Rearrangement of Open Cells

Surface Convergence Patterns

Synchronization: Oscillations in Precipitation

Feingold, Koren, Wang, Xue, Brewer (2010)

Feingold, Koren, Wang, Xue, Brewer (2010)

Resilience through interaction of outflows

Stability attained by cloud elements communicating with one another

Low aerosol conc. or cloud thickening

- \rightarrow Drizzle
- \rightarrow Interaction between cloud elements via colliding outflows
- \rightarrow Stabilization of system

Aerosol influences in Trade Cumulus

Photo Jen Small RICO clouds

Resilience in a non-precipitating Cu system

Resilience through communication with the environment

Stability is attained by cloud elements communicating with their environment

Aerosol perturbations to cloud microphysics

- \rightarrow changes in BL thermodynamics
- \rightarrow changes in cloud field properties
- \rightarrow homogenization

Influence on cloud optical depth

Only about 75% of the Twomey increase in albedo is realized because of horizontal and vertical spatial variability in microphysical properties

$$
Clean (50 cm-3)
$$

----- Polluted (250 cm⁻³)

i.e.,
$$
3/4 \times (N_{d,H}/N_{d,C})^{1/3}
$$

Simplified Equation Sets (low dimensional models)

Large Eddy Simulation of Aerosol-Cloud-Precipitation

Predator-Prey Model

Predator-Prey Model

Lotka-Volterra Equation for Population Dynamics (circa 1926)

 $x = \text{prey}$

Image courtesy of Wikipedia

 $y =$ predator 4 parameters: $\alpha, \beta, \gamma, \delta$

Predator-Prey Model

Clouds=Rabbits; Rain=Foxes

- Cloud builds up
- Rain follows some time behind
- Rain destroys cloud
- Cloud regenerates (met forcing, colliding outflows, etc)

and so on…

Many possible predator-prey pairs:

Rain; Aerosol Convection; Instability (Nober and Graf) Droplets; Supersaturation Ice; Water (Bergeron-Findeisen)

Large Eddy Simulation of Aerosol-Cloud-Precipitation The Predator-Prey Problem

(Adapted) Predator-Prey Model

Balance Equations \overline{a} $\overline{}$ *H*² *c*1 *q*(*z*)*dz* = \overline{c} lar

Cloud Depth *H*

$$
\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \left(\dot{H}_r(t - T)\right)
$$

Loss term due to rain

Rainrate *R*

 $\frac{1}{2}R^3N^{-1}$ = Emr $R = \alpha H^3 N_d^{-1}$ $\frac{1}{2}$ = $\frac{1}{2}$

Empirically and theoretically based

$$
R(t) = \frac{\alpha H^3(t - T)}{N_d(t - T)}
$$

Delay function (time for rain to develop)

Drop concentration N_d

$$
\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \left(\dot{N}_d(t - T)\right)
$$

Loss term due to rain

Notes:

Source terms represent a range of forcings that result in exponential rise to H_0 or N_0 within a few τ

 N_d (or aerosol) modulates *H-R* interaction

Balance Equations \overline{a} $\overline{}$ *H*² + *N*˙ *^d*(*t* − *T*)

Cloud Depth H $\frac{1}{2}$

$$
\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)
$$

Rainrate *R*

$$
R(t) = \frac{\alpha H^3(t - T)}{N_d(t - T)}
$$

 D rop concentration N_d

$$
\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)
$$

Notes:

Five parameters:

Carrying Capacity: H_0 , N_0

Time constants: τ_1 , τ_2

Delay time: *T* $\overline{}$ im

dH

dt

$$
R = \alpha H^3 N_d^{-1}
$$

Pawlowska and Brenguier 2003 vanZanten et al. 2005 Kostinski 200<mark>8</mark>

$Time$ -Dependent **Steady State Solutions** <u>م</u> er

No Stable
Solution

$$
\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)
$$

Strongly precipitating conditions; Aerosol is depleted

$$
R(t) = \frac{\alpha H^3(t - T')}{N_d(t - T')}
$$

 $\overline{\mathsf{Strong}}$ dependence of \overline{R} on \overline{H}_o

$$
\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)
$$

*H*igher N _{*c*} supports deeper clouds

 $\tau_1 = \tau_2 = 60$ min *T =* 10 min

Oscillating Solutions: Steady State

Oscillating Solutions: No Steady State

Stability

How stable are the stable states? How readily does the system transition from one state to another?

> *Stable states A and B are stable and self-sustaining*

Small perturbations strengthen the resilience of the state

 Stevens and Feingold, 2009

System of coupled oscillators

Vibrationdata Presents

Synchronization of Metronomes

By Tom & Joseph Irvine

www.vibrationdata.com

Summary

- The cloud-precipitation system is often stable to aerosol perturbations
- The dynamical systems approach may be useful to explore stability regimes
- Emergence: coherent patterns emerge from local interactions
	- Open/Closed cells
	- Flock behaviour
	- Oscillating chemical reactions
- Emergence suggests that low dimensional models might be useful as parameterizations in large scale models
	- (E.g. Shutts 2005; Mapes 2011)