Global Correlations Between Ecosystems and PBL Mixing

A new analysis based on 1,137,452 CALIPSO LIDAR soundings

- Covariance between surface fluxes and atmospheric transport of CO2 produces near-surface concentration timeseries with truncated minima
- The effect is analogous to an electronic rectifier produced by a diode.

Diurnal Rectifier Forcing

Mid-day

Weak Cumulus Convection High CO₂ Concentration Shallow PBL Mixing Decomposition

Midnight

Dilution of photosynthesis signal through deep mixing

Transport of low-CO₂ air into upper troposphere

Accumulation of respiration signal near the surface Elevated CO₂ in lower troposphere

Daily mean:

Accumulation of CO2 near the ground, depletion aloft

Conceptual Rectifier Model

Two-Box Model: No Rectification

- Sinusoidal surface fluxes
- Mixing time scale is constant
- Result is a sinusoidal diurnal cycle of PBL concentration
- Damped sinusoidal variations in the troposphere are out of phase with PBL

Two-Box Rectifier Forcing

- Diurnal cycles of flux and mixing are correlated
- Classic "rectified" signal
- Phase lag maximizes rectification ... reflects tracer "capacity" of PBL
- Diurnal mean in lower box is 133% of global mean

Seasonal Rectifier Forcing

Summer

Dilution of photosynthesis signal through deep mixing

Transport of low-CO₂ air into upper troposphere

Accumulation of respiration signal near the surface

Elevated CO₂ in lower troposphere

Annual mean: Accumulation of CO_2 near the ground, depletion aloft

Four-Box Model

(analogous to surface CO2 network?)

- Forcing over land is identical to two-box model
- No surface flux over ocean
- Advection between land and ocean ... cyclical boundaries
- Wind speed is 5x faster in troposphere than PBL

Seasonal Rectifier

4-Box Model

- Rectifier forcing on land is diluted by mixing over ocean (where F = 0)
- Vertical mixing over ocean has opposite seasonality relative to land
- Depending on parameter choices, free tropospheric advection and marine mixing can obliterate signal in MBL

Surface Rectifier Response

MATCH:NCEP regridded

Global Mean = 350.6

346.0 347.1 348.2 349.4 350.5 351.5 352.6 353.8 354.9

345.5 346.6 347.7 348.8 349.9 351.0 352.1 353.2 354.3

TM2 Global Mean = 350.09

345.1 346.3 347.5 348.7 349.9 351.1 352.3 353.5 354.7

344.5 345.7 346.9 348.1 349.3 350.5 351.7 352.9 354.1

- Differences in vertical structure among models produce huge differences in annual mean surface [CO₂]
- These differences are interpreted by the inversion as differences in surface fluxes
- Remember, they were produced by a flux field that integrates to zero at every grid cell in the annual mean!

Rectifier Controls Inversion Result

Rectifier response is the major source of uncertainty in NH sink, but can't observe directly in atmosphere

CALIPSO LIDAR Sounder

- Launched mid-2006
- 705 km A-Train orbit
- mid-day overpass
- 532 nm laser ranging
- millions of soundings per month

© CNES - Juillet 2004 / illustration P.CARRIL

Boundary-Layer Retrieval

- Search upwards from 500 m to 5 km
- Find lowest co-occurrence of maximum backscatter and vertical variance
- Thick clouds = missing data

Global Retrieval

Global Climatology

Matching SiB and CALIPSO

- Gather a list of successful PBL retrievals
- Match each one over land to a SiB grid cell in space and time
- Average all PBL retrievals for each cell for each hour (N = 1,137,452)
- Create a database of GPP, Resp, NEE, and PBL Depth at over a million places and times
- Sampling bias: only mid-day, clear-sky snapshots (not representative of means!)

Very noisy data!

Central Siberia

Latitude from 55 to 60, Longitude from 80 to 85

Monthly Means from Individual Samples

- Not monthly mean SiB fluxes!
- Much smoother behavior of PBL depths
- Correlated fluxes and PBL depths

Russian Boreal Forest

Correlation of Simulated Fluxes with Observed PBL Depths

Latitude 55 to 65, Longitude 65 to 150 Total Number of Soundings = 50430

Amazon Tropical Forest

Monthly Means from Individual Samples

- Not much seasonal variation of midday, clearsky biology or PBL
- Weak correlations

Latitude -5 to 5, Longitude -70 to -55 Total Number of Soundings = 4985

Observed PBL Depth vs Simulated GPP

Number of Valid Soundings Per Grid Cell

Sahara

- Almost no flux
- High but meaningless correlations

Simulated NEE vs Observed PBL Depth

Simulated GPP vs Observed PBL Depth

Simulated Rectifier CO2 Response

Speculative Comparison

Preliminary results suggest strong rectifier simulated by MATCH much more realistic than weak rectifier simulated in TM2

Observed Rectifier Forcing Simulated NEE vs Observed PBL Depth

