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Describing [IN] in models
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Aerosol-linked parameterization of [IN]
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Aerosol-linked parameterization of [IN]

Arctic cases are

1000 well-represented
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QUESTION:

Does linking ice formation to observed aerosol
(and thus to IN) improve our ability to simulate a
long-lived, mixed-phase cloud?



Three treatments for ice
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1. CONTROL (model
default): no explicit IN; ice
nucleated according to
Cooper scheme

(500 L cap, shown as
black line)

2. DIAGNOSTIC: IN are
predicted from DeMott et
al. parameterization, but
no IN budget is applied

- Represents observed IN
well

3. PROGNOSTIC (“IN budget”): same as
diagnostic, but IN are depleted when ice
nucleates and regenerated if the crystal
evaporates (SINGLE BIN APPROACH)

After DeMott et al., 2010



Case

ISDAC (APR 2008)

Spring cloud

* Transition to polluted
regime

 High sea-ice extent

Studies

FLIGHT 31 (26 APR)

* Oceanic air mass

* Observed [IN] ~1 L?

* Observedice ~0.1-1 L1
 ~15 hour lifetime

— Lower surface fluxes

FLIGHT 16 (8 APR)

* Continental air mass

* Observed [IN] <0.1-10 L
* Observedice ~0.1-1 L'
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Prior Conclusions about
Simulations of Flight 16 Clouds

Avramov et al., 201 1:

* DHARMA: Large-eddy simulations, using a size- * Adjusting to low density dendrites and aggregates
resolved bin microphysics model, prognostic IN in provided a better match to radar reflectivities, for two
10 bins assumptions about IN:

* [IN] specified on basis of 10 per liter active at * IN concentrations increased fourfold

cloud top T (-17C).This [IN] was actually

measured at -23C, and represents |0x DeMott et

* IN concentrations initialized with a vertically
uniform profile, and mixed in slowly from below
al. prediction. cloud

* “Reasonable agreement with the
observed ice number concentrations and

* Ability to “explain” cloud properties and persistence

was in contrast to previous studies of Arctic mixed-

size distributions, but radar reflectivities and ice phase clouds, which typically showed a large

water content were underestimated” . :
discrepancy when observed IN concentrations were

— LWC overestimated used and treated prognostically

* Missing process or missing [IN] source invoked



Simulations

DIAGNOSTIC

1. CTRL — Cooper Scheme (F16)

2. DEMOTT - [IN] Parameterization
(F16, F31)

3. 10x DM - [IN] Param. X10 (F16)

4.0.1x DM - [IN] Param. x0.1 (F16)

PROGNOSTIC

1. No sublimation (F16, F31)

2. Snow sublimation

3. Snow sublimation (dry lowest 200 m)

4. All sublimation (F16, F31)

5. All sublimation (dry lowest 200 m)
(F16)

6. All sublimation (5x DeMott instead
of 10x)

ISDAC ISDAC

Flight 16 Flight 31

Domain [km] 3x3 3x3
Simulated Time

[hrs] 12 12
Grid boxes 300x300 300x300
Ax [m] 10 10
Az [m] 10 10
At [s] 1 1
Aerosol Mode 1

Geometric Mean

Radius [um] 0.1 0.1
Aerosol Mode 1 ¢ 1.43 1.5
Aerosol Mode 1 N

[cm-3] 171.7 200
Aerosol Mode 2

Geometric Mean

Radius [um] 0.55 0.75
Aerosol Mode 2 ¢ 2.35 2
Aerosol Mode 2 N

[cm-3] 5 2




F16 — Diagnostic - Ice number concentration (cm= * 10)
8 APR 2008
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Observed N.: 0.4 L'! (Peak 0.8-1 L)
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Avramov N.: 0.25 L1 (0.4 L1)

lce number concentrations are OK
O.bO 0;5 14.0
lce conc

L) Avramov et al., 2011 (Observations in grey) "



F16 — Diagnostic - Cloud ice (g kgt * 104)

8 APR 2008
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Similar issues as past studies with
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Effects of changing IN Concentrations (F16)

8 APR 2008

Cloud ice (g kg* * 103) - DM _10

Height {meters)

Cloud ice (g kg** 10%) - DM _0.1

Height {(meaters)

When ice activation is decreased

by a factor of 10, cloud water
Bl strengthensin time.

But when increased by a factor of
10, cloud water is depleted by the
additional activation
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F16 — Prognostic — Drying Lowest 200 m

8 APR 2008
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Conclusions

Diagnostic IN, linked to aerosol measurements via the DeMott
parameterization, reasonably represented both IN and ice crystal number
concentrations and persistent mixed-phase cloud

— True also for coarser resolution modeling (100 m horizontal)

— But hard to get split between LVWC and ice mass correct, as also found in
other studies

Prognostic IN are scavenged effectively and lead to short lifetimes
— Allowing for sublimation and return of IN helps extend lifetime
— Also need to constrain fluxes of IN into domain

Conclude that the ISDAC case as hard to explain as other Arctic cases
that have been attempted

— Avramov et al. used [IN] at high end of observations, not consistent with most
observations nor the T regime of the clouds

— Need to improve the model’s ice microphysics — right now, spherical ice
assumed

— Cloud microphysical measurements should be improved to offer better
constraints as well



