Implementation and testing of an ice nucleation scheme in SAM

James Carpenter (successful M.S. defense 12/12/12) Sonia Kreidenweis, Paul DeMott, Mark Branson

(also, thanks to CMMAP for support, and to Dave Randall, Richard Eykholt, and Kelley Wittmeyer)

Describing [IN] in models

Describing [IN] in models

Describing [IN] in models

Aerosol-linked parameterization of [IN]

Adapted from DeMott et al., 2010

Aerosol-linked parameterization of [IN]

Adapted from DeMott et al., 2010

QUESTION:

Does linking ice formation to observed aerosol (and thus to IN) improve our ability to simulate a long-lived, mixed-phase cloud?

Three treatments for ice nucleation

 CONTROL (model default): no explicit IN; ice nucleated according to Cooper scheme (500 L⁻¹ cap, shown as black line)

2. DIAGNOSTIC: IN are predicted from DeMott et al. parameterization, but no IN budget is applied

→ Represents observed IN well

3. PROGNOSTIC ("IN budget"): same as diagnostic, but IN are depleted when ice nucleates and regenerated if the crystal evaporates (SINGLE BIN APPROACH)

Prior Conclusions about Simulations of Flight 16 Clouds

Avramov et al., 2011:

- DHARMA: Large-eddy simulations, using a sizeresolved bin microphysics model, prognostic IN in 10 bins
- [IN] specified on basis of 10 per liter active at cloud top T (-17C). This [IN] was actually measured at -23C, and represents 10x DeMott et al. prediction.
- "Reasonable agreement with the observed ice number concentrations and size distributions, but radar reflectivities and ice water content were underestimated"
 - LWC overestimated

- Adjusting to low density dendrites and aggregates provided a better match to radar reflectivities, for two assumptions about IN:
 - IN concentrations increased fourfold
 - IN concentrations initialized with a vertically uniform profile, and mixed in slowly from below cloud
- Ability to "explain" cloud properties and persistence was in contrast to previous studies of Arctic mixedphase clouds, which typically showed a large discrepancy when observed IN concentrations were used and treated prognostically
 - Missing process or missing [IN] source invoked

Simulations

DIAGNOSTIC

- 1. CTRL Cooper Scheme (F16)
- 2. DEMOTT [IN] Parameterization (F16, F31)
- 3. 10x DM [IN] Param. X10 (F16)
- 4. 0.1x DM [IN] Param. x0.1 (F16)

PROGNOSTIC

- 1. No sublimation (F16, F31)
- 2. Snow sublimation
- 3. Snow sublimation (dry lowest 200 m)
- 4. All sublimation (F16, F31)
- 5. All sublimation (dry lowest 200 m) (F16)
- All sublimation (5x DeMott instead of 10x)

		ISDAC Flight 1 <u>6</u>	ISDAC Flight 3 <u>1</u>
Do	omain [km]	3x3	3x3
Si	mulated Time		
[h	rs]	12	12
Gi	rid boxes	300x300	300x300
Δ>	([m]	10	10
Δz	ː [m]	10	10
Δt	[s]	1	1
Ae	erosol Mode 1		
Ge	eometric Mean		
Ra	adius [µm]	0.1	0.1
Ae	erosol Mode 1 σ	1.43	1.5
Ae	erosol Mode 1 N		
[c	m-3]	171.7	200
Ae	erosol Mode 2		
Ge	eometric Mean		
Ra	adius [µm]	0.55	0.75
Ae	erosol Mode 2 σ	2.35	2
Ae	erosol Mode 2 N		
[c	m-3]	5	2
			18

F16 – Diagnostic - Ice number concentration (cm⁻³ * 10⁻⁴) 8 APR 2008

F16 – Diagnostic - Cloud ice (g kg⁻¹ * 10⁻⁴)

Avramov et al., 2011 (Observations in grey)

IWC

[g m⁻³]

Effects of changing IN Concentrations (FI6) 8 APR 2008

F16 – Prognostic – Drying Lowest 200 m

8 APR 2008

F16 – Prognostic – Drying Lowest 200 m

8 APR 2008

Conclusions

- Diagnostic IN, linked to aerosol measurements via the DeMott parameterization, reasonably represented both IN and ice crystal number concentrations and persistent mixed-phase cloud
 - True also for coarser resolution modeling (100 m horizontal)
 - But hard to get split between LWC and ice mass correct, as also found in other studies
- Prognostic IN are scavenged effectively and lead to short lifetimes
 - Allowing for sublimation and return of IN helps extend lifetime
 - Also need to constrain fluxes of IN into domain
- Conclude that the ISDAC case as hard to explain as other Arctic cases that have been attempted
 - Avramov et al. used [IN] at high end of observations, not consistent with most observations nor the T regime of the clouds
 - Need to improve the model's ice microphysics right now, spherical ice assumed
 - Cloud microphysical measurements should be improved to offer better constraints as well