Performance of SPCAM and SPCAM-IPHOC at High Vertical Resolution in the Low Troposphere

Kuan-Man Xu¹ and Anning Cheng²

NASA Langley Research Center, Hampton, VA
Science Systems and Applications, Inc., Hampton, VA

Multiscale Modeling Framework (Grabowski 2001; Khairoutdinov and Randall 2001)

- A CRM is embedded at each grid column (~100s km) of the host GCM to represent cloud physical processes
- The CRM explicitly simulates cloudscale dynamics (~1s km) and processes
- Periodic lateral boundary condition for CRM (not extend to the edges)

Upgraded CRM with a third-order turbulence closure (IPHOC):

+Double-Gaussian distribution of liquid-water potential temperature, total water mixing ratio and vertical velocity

+Skewnesses, i.e., the three third-order moments, predicted

+All first-, second-, third- and fourth-order moments, subgrid-scale condensation and buoyancy based on the same PDF

٩

 $G(q_t)$

Motivation

• SPCAM with higher vertical resolution in the low troposphere or SPCAM with IPHOC (SPCAM-IPHOC) at coarser resolution?

Simulations

+ SP-12L: 12 levels below 700 hPa (enhanced) with SPCAM model.

- IP-6L: 6 levels below 700 hPa (standard vertical resolution) with SPCAM-IPHOC model;
- + IP-12L: 12 levels below 700 hPa (enhanced) with SPCAM-IPHOC;

All simulations were performed for 2 years and 3 months. The last two years are analyzed.

The following slides, except for zonal means, are arranged as:

SP-12L	IP-6L
IP-12L	Observation

Vertical cross section at 15° S, MMF vs. C3M

Northern Pac. transect (GPCI) cloud fraction (%)

Northern Pac. transect (GPCI) liquid+ice content

Zonal-mean cloud amounts, MMFs vs. C3M

Zonal and seasonal means, MMFs vs. C3M

TOA and surface energy imbalances

Experiment	SW	LW	Imbalance
SP-12L	230.4	234.5	-4.1
IP-6L	238.4	241.5	-3.1
IP-12L	240.6	240.4	+0.2
CERES Obs.	240.2	239.6	+0.6

Experiment	SW	LW	SH	LH	Imbalance
SP-12L	150.7	53.0	20.0	83.6	5.7
IP-6L	158.6	55.5	22.5	85.6	5.0
IP-12L	162.0	57.7	23.5	88.3	7.5
Observations	163.0	54.5	19.4	87.9	1.2

Summary and conclusions

- SPCAM with 12 level below 700 hPa (SP-12L) produces a global low-cloud amount nearly identical to that of SPCAM-IPHOC with 6 level below 700 hPa (IP-6L), but smaller than IP-12L and C3M observations.
- Vertical structures of low-level clouds are improved with higher vertical resolution for both SP-12L and IP-12L.
- Similar to conventional GCMs, SPCAM produces optically thicker clouds to compensate for the lack of cloud areas (low, high and total); cloud radiative forcings are overestimated, but both TOA SW and LW fluxes are underestimated.
- All simulations have various amounts of energy imbalances at TOA and surface, which should be fixed for long-term and/or coupled model simulations.
- SP-12L would be ideal for coupled model simulations due to its improvement in low cloud simulations, compared to the standard resolution SPCAM.