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Wayne Schubert 1973 Cumulus/ L-S interaction
David Randall 1976 PBL/ L-S interaction
Chin-Hoh Moeng 1979 PBL cloud stability

Steven Krueger 1985 Cumulus/ PBL interaction
Kuan-Man Xu 1991 Cumulus/ L-S interaction
Celal Konor 1992 Frontogenesis

Joon-Hee Jung (1997) (Stratosphere dynamics)

None of these students directly worked on GCM development

because | wanted them to work on scientifically more focused problems.

I am the one who benefitted the most from this policy !




HISTORY OF NUMERICAL MODELING OF THE ATMOSPHERE

| have been fortunate to witness and participate in

the entire history of numerical modeling.
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FIRST PHASE (1950-1960)

Introdcution of

early NWP models with highly simplified dynamics

ALSO

Recognition of the close relation between

the dynamics of "cyclones" and that of "general circulation”

Highlight: Phillips’s (1956) numerical experiment




MY FIRST RESEARCH EXCITEMENT (1961-1963)

4 )
Development of a “cyclone-resolving” model

for global circulation

— Opening of the SECOND PHASE —

N y

e The primary interest was still in dynamics.

e The major problem was computational.

My work on the finite-dIfference Jacobian was almost
immediately recognized by the meteorological community,
but it took years to convince the applied mathematicians.



SECOND PHASE (1960-2000)

/

\

The scope of general circulation modeling magnificently expanded

from single-process to multi-process modeling.

e The importance of cumulus convection was recognized

almost immediately.

® My major concern was to find the logical basis for

parameterizability. !



MY SECOND RESEARCH EXCITEMENT (1970-1974)

Arakawa-Schubert (1974):

An attempt to find the logical basis for parameterizability
\— _J

It took time for this paper to be widely recognized
because most people considered parameterization

as a simpler engineering problem.



BASIC HYPOTHESES OF ARAKAWA-SCHUBERT

4 N
“ Consider a horizontal area large enough to contain

an ensemble of cumulus clouds but small enough to

cover only a fraction of a large-scale disturbance.”
- J

-

The overall intensity of cumulus activity is determined
by an approximate balance between destabilization by

slow large-scale processes and stabilization by fast

cumulus-convective processes.

These are over-simplifications, but | didn’t see how

cumulus convection can be parameterized without them.




APPROACHING A PLATEAU ?

As the scope of numerical modeling expands,
new modules were kept added, but

there was little effort to improve the scientific basis for modeling.

/

| was almost ready to fully retire around 2000.

But Dr.Tao asked me to give an invited talk
at the Cumulus Parametrization Workshop
at GSFC on December 3-5,2001



MAJOR CONCEPTUAL PROBLEMS IN

EXISTING PARAMETERIZATIONS OF SUBGRID-SCALE PROCESSES

(An edited version of a slide shown at the Workshop)

1. Different processes (e.g., radiation, cloud, turbulence, etc.) interact only

through grid-scale variables, losing most of their subgrid-scale interactions.

2. A single non-physical scale— grid size— separates processes that can be

explicitly simulated and those that can only be in quasi-equilibrium.

3. The resolution dependence of the required physics is left to blind tuning.

At the same Workshop, David Randall presented early results of Super-Parameterization.



EVIDENCE FOR THE TRANSITION OF MODEL PHYSICS

Jung and Arakawa (2004)

Budget analyses of CRM-simulated data applied to various space/time intervals

with and without (a component of) model physics

Average Profiles of "REQUIRED” Source for Moist Static Energy
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TRI-POLARIZATION OF GLOBAL MODELS

Deep convection

“GRAY Zz2ONE"

Explicitly simulated

Deep convection
Highly parameterized
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MY LATEST RESEARCH EXCITEMENT (2004-2014)

Working toward unification of these families of models

Thank you, CMMAP, for giving me this excitement!



UNIFICATION OF LOW-RESOLUTION GLOBAL MODELS AND GCRM

Arakawa et al., 2011, Atmos. Chem. Phys.
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Deep convection
Explicitly simulated

UNIFIED
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o Regardless of the resolution, the dynamics of the model must be
Prerequisite:

that of GCRM, which is necessarily nonhydrostatic and elastic.
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UNIFICATION OF
THE ANELASTIC AND QUASI-HYDROSTATIC SYSTEMS OF EQUATIONS

_/

Arakawa and Konor. 2009, MWR

Refer to Celal Konor’s presentation

These systems are physically quite different.

For example, the physical meaning of pressure is different as :

Quasi-static system: A measure of the mass above

Anelastic system: The potential of a force required to maintain anelasticity



As in the traditional model, unified models couple the host GCM
with an ancillary model that provides collective effects of subgrid-

scale processes, either parameterized or simulated.

r

If the ancillary model represents more than the subgrid-scale processes,

double counting of the same process or spurious competition

between the grid-scale and subgrid-scale processes may occur.

\




THE QUASI-3D MULTISCALE MODELING FRAMEWORK

Jung and Arakawa. 2005, MWR
Jung and Arakawa. 2010, 2014, JAMES

Refer to Joon-Hee Jung’s presentation

The CRM does not fully represent the cloud-scale 3D processes
but recognizes GCM'’s 3D structure through the background field.

A product of Joon-Hee’s extraordinarily meticulous and patient work



UNIFIED REPRESENTATION OF DEEP MOIST CONVECTION
IN NUMERICAL MODELING OF THE ATMOSPHERE: PART |

Arakawa and Wu, 2013, JAS

An attempt to eliminate these assumptions of AS.

4 )
“ Consider a horizontal area large enough to contain

an ensemble of cumulus clouds but small enough to

cover only a fraction of a large-scale disturbance.”
- J

4 A

The overall intensity of cumulus activity is determined
by an approximate balance between destabilization by

slow large-scale processes and stabilization by fast

cumulus-convective processes.

N J




THE KEY PARAMETER IN THE UNIFIED REPRESENTATION

G : The fractional area in the grid cell covered by convective updrafts

When the area covered by individual updrafts is fixed,

o is a measure of the fractional population of updrafts.



UNIFIED PARAMETERIZATION

The assumption of small ¢ is eliminated.

In the limit as 6 —> 0, it reduces to a conventional cumulus parameterization

with full adjustment to an equilibrium profile.
For the transport, it formulates only the eddy transport.

It includes the reduction of eddy transport as ¢ —>1 due to filling the grid
cell by updrafts.

G is determined by the grid-scale destabilization rate normalized by the efficiency

of eddy transport.



CRM SIMULATIONS USED FOR STATISTICAL ANALYSIS

Model : The vorticity equation model of Jung and Arakawa (2008)

Horizontal domain size : 512 km

Horizontal grid size : 2km

Snapshots of vertical velocity w at 3 km height
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SUB-DOMAINS REPRESENTING DIFFERENT RESOLUTIONS

To see the grid-size dependence of the statistics,

the original CRM domain (512 km) is divided into sub-domains of same size.

Examples

d=128km
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The sub-domain size is interpreted as the GCM grid size.



RESOLUTION DEPENDENCE OF ENSEMBLE-AVERAGE O
o:The fractional number of grid points with w>0.5 m/s in a sub-domain

< >: Average over an ensemble of cloud-containing (i.e., ¢ > 0) sub-domains
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[The assumption of 6<<1 is valid only for low resolutions.}




RESOLUTION DEPENDENCE OF

ENSEMBLE-AVERAGE VERTICAL TRANSPORT OF MOIST STATIC ENERGY

m/s K
SHEAR CASE
*1 z=3km h : Deviation of moist static energy
from a reference state
2- PN . .
( ) : Average over all CRM grid points
in the sub-domain
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Parameterization is supposed to produce the green curve
NOT the red curve.




THE C—DEPENDENCE OF

ENSEMBLE-AVERAGE VERTICAL TRANSPORT OF MOIST STATIC ENERGY
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The relative importance of the component to be parameterized

strongly depends on G.




THE RATIO OF THE EDDY- TO TOTAL-TRANSPORT OF OF h
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The ratio depends on G rather than the resolution,d.
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UNIFIED REPRESENTATION OF DEEP MOIST CONVECTION
IN NUMERICAL MODELING OF THE ATMOSPHERE: PART II

Wu and Arakawa, 2014, submitted to JAS

Analyses of the smulated data in view of
the vertical transport of horizontal momentum

and the c—dependence of physical sources
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RESOLUTION DEPENDENCE

VERTICAL TRANSPORT OF HORIZONTAL MOMENTUM
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The u-momentum and v-momentum transports have quite

different vertical structures (and different dependence on d).
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downgradient
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RESOLUTION DEPENDENCE

VERTICAL TRANSPORT OF HORIZONTAL MOMENTUM
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RESOLUTION DEPENDENCE

VERTICAL TRANSPORT OF HORIZONTAL MOMENTUM
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These results seem to be consistent wih

what Mitchell Moncrieff has been emphasizing.



CLOUD-MICROPHYSICAL CONVERSIONS INCLUDED IN THE MODEL

Cloud Water/Ice
Rain Snow/Graupel
S —

Solid lines: Conversions taking place primarily within updrafts

Dashed lines: Conversions taking place primarily outside of updrafts



THE NET CONVERSION
FROM WATER VAPOR TO CLOUD WATER/ICE
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121

TO RAIN

d=8KM

=TT T T [ [ T T T T Tt 1

0.2

04

THE NET CONVERSION FROM CLOUD WATER/ICE

TO SNOW/GRAUPEL

(c)




THE NET CONVERSION FROM RAIN TO SNOW/GRAUPEL
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THE EVAPORATION OF RAIN AND SUBLIMATION OF SNOW/GRAUPEL
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SUMMARY

® A generalized modeling framework, called “unified parameterizaion”,

is presented.

® The key parameter in the framework is 6 determined for each realization

of grid-scale process.

® The eddy transport of moist static energy (and other thermodynamic

variables) decreases as ¢ approaches 1.

® The traditional approach of parameterizing the vertical transport of

horizontal momentum does not work for the line-normal component. .

® Cioud-microphysical conversions taking place within updrafts is

roughly proportional to ¢, while those taking place outside of updrafts

are roughly proportionalto 1 -o.



HISTORY OF NUMERICAL MODELING OF THE ATMOSPHERE

LES Models

Cloud Resolving Models

Mesoscale models

Unification
Global and Regional NWP Models (11
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THANK YOU, DAVE,
AND ALL OF MY EX-STUDENTS AND COLLEAGUES

FOR GIVING ME THIS EXCITEMENT !




