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the dynamics of "cyclones" and that of "general circulation"

Recognition of the close relation between

Highlight:  Phillips’s (1956) numerical experiment

ALSO
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Development of a “cyclone-resolving” model

for global circulation

The major problem was computational.

The primary interest was still in dynamics.

�  Opening of the SECOND PHASE  � 

My work on the !nite-dI"erence Jacobian was almost
immediately recognized by the meteorological community,
but it took years to convince the applied mathematicians. 
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The importance of cumulus convection was recognized

almost immediately.

My major concern was to !nd the logical basis for 

parameterizability.
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Arakawa-Schubert (1974):

An attempt to !nd the logical basis for parameterizability

It took time for this paper to be widely recognized

because most people considered parameterization

as a simpler engineering problem.
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“ Consider a horizontal area large enough to contain

an ensemble of cumulus clouds but small enough to

cover only a fraction of a large-scale disturbance.” 

The overall intensity of cumulus activity is determined

by an approximate balance between destabilization by

slow large-scale processes and stabilization by fast

cumulus-convective processes.

These are over-simpli!cations, but I didn’t see how

cumulus convection can be parameterized without them.
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APPROACHING A PLATEAU  ?

I was almost ready to fully retire around 2000.

As the scope of numerical modeling expands, 

new modules were kept added, but

there was little e!ort to improve the scienti"c basis for modeling.

But Dr. Tao asked me to give an invited talk

at the Cumulus Parametrization Workshop

at GSFC on December  3-5, 2001
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MAJOR CONCEPTUAL PROBLEMS IN 

The resolution dependence of the required physics is left to blind tuning.

(An edited version of a slide shown at the Workshop)

Different processes (e.g., radiation, cloud, turbulence, etc.) interact only

through grid-scale variables, losing most of their subgrid-scale interactions.

1.

2.

3.

A single non-physical scale  - grid size -  separates processes that can be

explicitly simulated and those that can only be in quasi-equilibrium.

At the same Workshop, David Randall presented early results of Super-Parameterization.
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Working toward uni!cation of these families of models

Thank you, CMMAP, for giving me this excitement !





Arakawa and Konor. 2009, MWR

UNIFICATION OF 

THE ANELASTIC AND QUASI-HYDROSTATIC SYSTEMS OF EQUATIONS

Refer to Celal Konor’s presentation

Arakawa and Konor. 2009, MWR

UNIFICATION OF 

THE ANELASTIC AND QUASI-HYDROSTATIC SYSTEMS OF EQUATIONS

Refer to Celal Konor’s presentation

Arakawa and Konor. 2009, MWR

UNIFICATION OF 

THE ANELASTIC AND QUASI-HYDROSTATIC SYSTEMS OF EQUATIONS

These systems are physically quite different.

Refer to Celal Konor’s presentation

Arakawa and Konor. 2009, MWR

UNIFICATION OF 

THE ANELASTIC AND QUASI-HYDROSTATIC SYSTEMS OF EQUATIONS

 Quasi-static system:  A measure of the mass above

Anelastic system:  The potential of a force required to maintain anelasticity

These systems are physically quite different.

Refer to Celal Konor’s presentation

For example, the physical meaning of pressure is different as :
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As in the traditional model, uni!ed models couple the host GCM

with an ancillary model that provides collective e"ects of subgrid-

scale processes, either parameterized or simulated.

If the ancillary model represents more than the subgrid-scale processes,

double counting of the same process or spurious competition

between the grid-scale and subgrid-scale processes may occur.
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THE QUASI-3D MULTISCALE MODELING FRAMEWORK

The CRM does not fully represent the cloud-scale 3D processes

but recognizes GCM’s 3D structure through the background !eld.

Refer to Joon-Hee Jung’s presentation

A product of Joon-Hee’s extraordinarily meticulous and patient work
.
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UNIFIED REPRESENTATION OF DEEP MOIST CONVECTION

IN NUMERICAL MODELING OF THE ATMOSPHERE: PART I 

“ Consider a horizontal area large enough to contain

an ensemble of cumulus clouds but small enough to

cover only a fraction of a large-scale disturbance.” 

The overall intensity of cumulus activity is determined

by an approximate balance between destabilization by

slow large-scale processes and stabilization by fast

cumulus-convective processes.

An attempt to eliminate these assumptions of AS.
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The assumption of small X��is eliminated.

In the limit as X         0, it reduces to a conventional cumulus parameterization

with full adjustment to an equilibrium pro!le.

For the transport, it formulates only the eddy transport.

It includes the reduction of eddy transport as  X        1 due to !lling the grid

cell by updrafts.

 X  is determined by the grid-scale destabilization rate normalized by the e"ciency

of eddy transport.
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UNIFIED REPRESENTATION OF DEEP MOIST CONVECTION

IN NUMERICAL MODELING OF THE ATMOSPHERE: PART II 

Analyses of the smulated data in view of 

the vertical transport of horizontal momentum

and the X�dependence of physical sources
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The u-momentum and v-momentum transports have quite

different vertical structures (and different dependence on d ).
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CLOUD-MICROPHYSICAL CONVERSIONS INCLUDED IN THE MODEL

Solid lines:  Conversions taking place primarily within updrafts

Dashed lines:  Conversions taking place primarily outside of updrafts
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A generalized modeling framework, called “uni!ed parameterizaion”,

is presented.

The key parameter in the framework is �X determined for each realization

of grid-scale process. 

The eddy transport of moist static energy (and other thermodynamic

variables) decreases as X approaches 1.

The traditional approach of parameterizing the vertical transport of

horizontal momentum does not work for the line-normal component. .

Cioud-microphysical conversions taking place within updrafts is

roughly proportional to X, while those taking place outside of updrafts

are roughly proportional to 1 - X�.
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