Numerical simulations of orographic locking of precipitation in an idealized typhoon environment

Chien-Ming Wu National Taiwan University

@CMMAP Jan 2014

The block mountain approach in VVM

Topography is implemented by using direct forcing at the mountain corners

•The strength of the vorticity at the corners is determined through vorticity definition.

$$
\eta_b = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \quad u_b = w_b = 0
$$

Wu and Arakawa 2011

On the phase locking of precipitation over complex topography

•Precipitation seems to be localized as the topography becomes more complex

Contour: Precipitation (mm/hr)

Typhoon Morakot

2009 08/05-08/10

 Most devastating typhoon to hit Taiwan during the past 50 years. (total damage about NT\$110 billion)

49 Curtsey from Professor Hung-Chi Kuo

Can VVM capture the precipitation pattern "without" the typhoon itself?

30 hours averaged profiles during typhoon Morakot

Initial soundings The Experiment setup :

- Horizontal resolution: **1 km**
- Vertical resolution: **70 levels** with stretching grid with 50m near surface and 500m near model top
- Domain size: **1024x1024 km** with Taiwan in the center
- Wind field: **20 m/s south-westerly wind** over the domain
- Model is integrated for **6 hours** with averaged over the **last 3 hours** shown.
- Land surface is currently treated as water with fix ground wetness

Domain averaged precipitation (mm/hr)

Results

Radar derived typhoon Morakot precipitation **Idealized simulations with only South Westerly fl**

Resolution dependency of orographic locking of precipitation

• Precipitation strength and pattern is similar among southern part of the mountain suggesting that the orographic lifting of precipitation dominates.

Contour: precipitation (10 mm/hr)

Resolution dependency of orographic locking of precipitation

• Northern part of the mountain shows drastic difference in strength and location showing the importance of the effects of complex topography.

On the orographic complexity

- Precipitation locking due to orography is greatly reduced in smooth topography.
- Increase mountain height only slightly enhances the precipitation.

Contour: precipitation (10 mm/hr)

On the effects of the valleys

• The precipitation locking is predetermined by the shapes of the valleys. The height of the mountain determines the maximum strength of precipitation.

Contour: precipitation (10 mm/hr)

Summary and future work

- Orographic locking of precipitation is very sensitive to the complexity of topography.
- Valley effects are more important than the mountain height in determining the precipitation pattern as long as the flow can pass the topography.
- Various strength and wind directions are tested to construct maps of precipitation produced only by the topography.

Preliminary results of a partial-grid block mountain in VVM

Mu-Hua Chien and Chien-Ming Wu National Taiwan University

@CMMAP Jan 2014

The block mountain approach in VVM

DETERMINING THE VORTICITY AT THE CORNERS OF THE TOPOGRAPHY

•The strength of the vorticity at the corners is determined through vorticity definition.

$$
\begin{array}{|c|c|c|c|c|}\n\hline\n\textbf{w}_b &=& \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} & u_b = w_b = 0 \\
\hline\n\textbf{k} \\
3+1/2 &=& \frac{1}{w_1^2} & & \frac{1}{w_1^2} \\
2+1/2 &=& \frac{1}{w_1^2} & & \frac{1}{w_1^2} \\
2+1/2 &=& \frac{1}{w_1^2} & & \frac{1}{w_1^2} \\
1+1/2 &=& \frac{1}{w_1^2} & & \frac{1}{w_1^2} \\
1 &=& & \frac{1}{w_1^2} & & \frac{1}{w_1^2} \\
1/2 &=& & \frac{1}{w_1^2} & & \frac{1}{w_2^2} \\
\hline\n\textbf{1} &=& & \frac{1}{w_1^2} & & \frac{1}{w_2^2} \\
\hline\n\textbf{1}
$$

Wu and Arakawa 2011

The meridional vorticity $\frac{\partial W'}{\partial x}-\frac{\partial U'}{\partial z}$ With δz above origin η point.

Where $W' = U' = 0$ at the physical boundary.

The U′ and W′ in the computational region apply linear interpolation.

Apply $\eta_{3+1/2}$ and η' to extrapolate the $\eta_{1+1/2}$

Let
$$
\beta = \delta z/2dz
$$

\n $\eta' = (1 - \beta)\eta_{1+1/2} + \beta \eta_{3+1/2}$
\n $\eta_{1+1/2} = \eta' - \beta \eta_{3+1/2}/(1 - \beta)$

Gravity wave results from "full cell" block mountain

• The strength of the mountain wave depends linearly on the mountain height.

Control experiment: dx=dy=dz=100m, U=10 m/s

Block mountain height: 100m (1dz) and 200m (2dz) Mountain width: 1 km.

Gravity wave results from "partial cell" block mountain

Vertical velocity with **140m** mountain

Vertical velocity with **180m** mountain

- Preliminary results suggest that the simple interpolation/ extrapolation works for the partial grid mountains in the gravity wave simulations.
- There are still problems with lower boundary when the mountains are within the first grid.
- A BICG solver for the w-equation is implemented to try to solve this problem by changing coefficients in the lower boundary.